Uniportal VATS S9 segmentectomy: The ligamentum-based approach

2021 ◽  

Isolated resection of the lateral-basal segment (S9) is uncommon, and it is considered one of the most complex anatomic segmentectomies. First, the segmental arterial and venous supply is located deeply in the lung parenchyma, making the dissection difficult. Second, the cuboidal shape of the lateral basilar segment hampers the identification of the intersegmental plane. Although identifying the segmental arterial branches is easier from a fissure-based technique, the ligamentum-based approach emerges as a valid and safe alternative in cases of a fused fissure.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yong Yang ◽  
Shaojun Zhang ◽  
Zhengwei Dong ◽  
Yong Xu ◽  
Xuefei Hu ◽  
...  

Abstract Objective Surgical resection plays an essential role in the treatment of Pulmonary Tuberculosis (PTB). There are few reports comparing lobectomy and sublobectomy for pulmonary TB with cavity. To compare the advantages between lobectomy and sublobectomy for localized cavitory PTB, we performed a single-institution cross sectional cohort study of the surgical patients. Methods We consecutively included 203 patients undergoing lobectomy or sublobectomy surgery for localized cavitary PTB. All patients were followed up, recorded and compared their surgical complication, outcome and associated characteristics. Results Both groups had similar outcomes after follow up for 13.1 ± 12.1 months, however, sublobectomy group suffered fewer intraoperative blood losses, shorter length of stay, and fewer operative complications than lobectomy group (P <  0.05). Both groups obtained satisfactory outcome with postoperatively medicated for similar period of time and few relapse (P > 0.05). Conclusion Both sublobectomy and lobectomy resection were effective ways for cavitary PTB with surgical indications. If adequate anti-TB chemotherapy had been guaranteed, sublobectomy is able to be recommended due to more lung parenchyma retain, faster recover, and fewer postoperative complications.


2021 ◽  

The lateral and posterior basal (S9+10) segmentectomy is one of the most challenging operations because it requires exposure and recognition of pulmonary vessel branches and bronchi that are located deep in the lung parenchyma. To perform this difficult operation appropriately, even via a uniportal approach, we adopted a modified version of the intersegmental tunneling procedure. Intersegmental tunneling followed by division of the intersegmental plane between S6 and S9-10 was performed before the division of the A9+10 in the modified version. In addition to the clear recognition of the dominant vessels and bronchi permitted by the tunneling procedure, we were able to divide them smoothly using a stapler in the modified version, although the tip of the inserted stapler stuck to the lung parenchyma in the previous version. This method might be universally preferable, even for less experienced surgeons, when they perform this challenging operation.


Author(s):  
Andreas Kirschbaum ◽  
Andrijana Ivanovic ◽  
Thomas Wiesmann ◽  
Nikolas Mirow ◽  
Christian Meyer

AbstractIf a pulmonary pathology can be removed by anatomical segmentectomy, the need for lobectomy is obviated. The procedure is considered oncologically equivalent and saves healthy lung tissue. In every segmentectomy, lung parenchyma must be transected in the intersegmental plane. Using an ex vivo model based on porcine lung, three transection techniques (monopolar cutter + suture, stapler, and Nd:YAG laser) are to be compared with respect to their initial airtightness. At an inspiratory ventilation pressure of 25 mbar, all three preparations were airtight. Upon further increase in ventilation pressure up to 40 mbar, the laser group performed best in terms of airtightness. Since thanks to its use of a laser fibre, this technique is particularly suitable for minimally invasive surgery; it should be further evaluated clinically for this indication in the future.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mizuko Ikeda ◽  
Miwako Tanabe ◽  
Ayumi Fujimoto ◽  
Tomoka Matsuoka ◽  
Makoto Sumie ◽  
...  

Abstract Background During pulmonary segmentectomy, identification of the target segment is essential. We used bronchoscopic jet ventilation (BJV) to delineate the intersegmental plane by selectively sending air into the target segment. The purpose of this study was to investigate the factors associated with BJV failure. Methods Data were retrospectively collected from 48 patients who underwent pulmonary segmentectomy with BJV between March 2014 and May 2019 at a single center. Data were compared between BJV succeeded cases and failed cases. Results In 13 cases (27%), BJV were unsuccessful. The Brinkman index was significantly higher in failed cases (962 ± 965 failed vs. 395 ± 415 successful, P = 0.0067). The success rate was significantly lower when BJV was applied to the posterior basal segmental bronchus (B10) (B10: 1/5 (20%) vs others: 34/43 (79%), P = 0.015). Conclusion Long-term smoking and the bronchus corresponding to the posterior basal segment might make successful performance of BJV difficult.


Author(s):  
C. G. Plopper ◽  
C. Helton ◽  
A. J. Weir ◽  
J. A. Whitsett ◽  
T. R. Korfhagen

A wide variety of growth factors are thought to be involved in the regulation of pre- and postnatal lung maturation, including factors which bind to the epidermal growth factor receptor. Marked pulmonary fibrosis and enlarged alveolar air spaces have been observed in lungs of transgenic mice expressing human TGF-α under control of the 3.7 KB human SP-C promoter. To test whether TGF-α alters lung morphogenesis and cellular differentiation, we examined morphometrically the lungs of adult (6-10 months) mice derived from line 28, which expresses the highest level of human TGF-α transcripts among transgenic lines. Total volume of lungs (LV) fixed by airway infusion at standard pressure was similar in transgenics and aged-matched non-transgenic mice (Fig. 1). Intrapulmonary bronchi and bronchioles made up a smaller percentage of LV in transgenics than in non-transgenics (Fig. 2). Pulmonary arteries and pulmonary veins were a smaller percentage of LV in transgenic mice than in non-transgenics (Fig. 3). Lung parenchyma (lung tissue free of large vessels and conducting airways) occupied a larger percentage of LV in transgenics than in non-transgenics (Fig. 4). The number of generations of branching in conducting airways was significantly reduced in transgenics as compared to non-transgenic mice. Alveolar air space size, as measured by mean linear intercept, was almost twice as large in transgenic mice as in non-transgenics, especially when different zones within the lung were compared (Fig. 5). Alveolar air space occupied a larger percentage of the lung parenchyma in transgenic mice than in non-transgenic mice (Fig. 6). Collagen abundance was estimated in histological sections as picro-Sirius red positive material by previously-published methods. In intrapulmonary conducting airways, collagen was 4.8% of the wall in transgenics and 4.5% of the wall in non-transgenic mice. Since airways represented a smaller percentage of the lung in transgenics, the volume of interstitial collagen associated with airway wall was significantly less. In intrapulmonary blood vessels, collagen was 8.9% of the wall in transgenics and 0.7% of the wall in non-transgenics. Since blood vessels were a smaller percentage of the lungs in transgenics, the volume of collagen associated with the walls of blood vessels was five times greater. In the lung parenchyma, collagen was 51.5% of the tissue volume in transgenics and 21.2% in non-transgenics. Since parenchyma was a larger percentage of lung volume in transgenics, but the parenchymal tissue was a smaller percent of the volume, the volume of collagen associated with parenchymal tissue was only slightly greater. We conclude that overexpression of TGF-α during lung maturation alters many aspects of lung development, including branching morphogenesis of the airways and vessels and alveolarization in the parenchyma. Further, the increases in visible collagen previously associated with pulmonary fibrosis due to the overexpression of TGF-α are a result of actual increases in amounts of collagen and in a redistribution of collagen within compartments which results from morphogenetic changes. These morphogenetic changes vary by lung compartment. Supported by HL20748, ES06700 and the Cystic Fibrosis Foundation.


2020 ◽  
Vol 04 (03) ◽  
pp. 291-302
Author(s):  
Mariam F. Eskander ◽  
Christopher T. Aquina ◽  
Aslam Ejaz ◽  
Timothy M. Pawlik

AbstractAdvances in the field of surgical oncology have turned metastatic colorectal cancer of the liver from a lethal disease to a chronic disease and have ushered in a new era of multimodal therapy for this challenging illness. A better understanding of tumor behavior and more effective systemic therapy have led to the increased use of neoadjuvant therapy. Surgical resection remains the gold standard for treatment but without the size, distribution, and margin restrictions of the past. Lesions are considered resectable if they can safely be removed with tumor-free margins and a sufficient liver remnant. Minimally invasive liver resections are a safe alternative to open surgery and may offer some advantages. Techniques such as portal vein embolization, association of liver partition with portal vein ligation for staged hepatectomy, and radioembolization can be used to grow the liver remnant and allow for resection. If resection is not possible, nonresectional ablation therapy, including radiofrequency and microwave ablation, can be performed alone or in conjunction with resection. This article presents the most up-to-date literature on resection and ablation, with a discussion of current controversies and future directions.


2020 ◽  
Vol 142 ◽  
pp. 55-61
Author(s):  
WT Li ◽  
YL Chiang ◽  
TY Chen ◽  
CL Lai

Eurasian otters Lutra lutra are listed as Near Threatened on the IUCN Red List and are imperiled by habitat loss, water pollution, and poaching. Harassment and attacks by stray animals are also recognized threats to the health of wild Eurasian otters. Pulmonary hair embolism is a possible complication in animals with deep traumatic injury, but to date no cases have been reported in wildlife. A free-ranging, adult male Eurasian otter was rescued due to severe emaciation and multiple bite wounds. The otter died 3 d after rescue and was necropsied. Grossly, a 1.5 × 1.5 × 1.5 cm firm nodule was observed in the left cranial lung lobe. Histologically, a fragment of hair shaft surrounded by multinucleated foreign body giant cells was observed in a medium-sized vein, and extensive eosinophilic infiltration was noted in the adjacent vascular wall and lung parenchyma. Based on the gross and histological findings, the pulmonary lesion was consistent with eosinophilic pneumonia and vasculitis induced by hair embolism. The presence of well-formed multinucleated foreign body giant cells and eosinophils may imply a late stage of foreign body reaction, and thus the presumptive source of hair embolism is an animal bite. This is the first report of pulmonary hair embolism associated with animal bite in a rescued free-ranging Eurasian otter.


2013 ◽  
Author(s):  
Anna Kjerstine Rosenmai ◽  
Camilla Taxvig ◽  
Anne Marie Vinggaard ◽  
Marianne Dybdahl ◽  
Gitte Alsing Petersen ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document