§4. THE LAPLACE-BELTRAMI OPERATOR FOR THE MODULAR GROUP

1984 ◽  
Vol 96 ◽  
pp. 167-174 ◽  
Author(s):  
Akio Fujii

Let ; … run over the eigenvalues of the discrete spectrum of the Laplace-Beltrami operator on L2(H/yΓ), where H is the upper half of the complex plane and we take Γ = PSL(2, Z). It is well known that Let a be a positive number. Here we are concerned with the zeta function defined by


2020 ◽  
Vol 25 (4) ◽  
pp. 10-15
Author(s):  
Alexander Nikolaevich Rybalov

Generic-case approach to algorithmic problems was suggested by A. Miasnikov, I. Kapovich, P. Schupp and V. Shpilrain in 2003. This approach studies behavior of an algo-rithm on typical (almost all) inputs and ignores the rest of inputs. In this paper, we prove that the subset sum problems for the monoid of integer positive unimodular matrices of the second order, the special linear group of the second order, and the modular group are generically solvable in polynomial time.


2021 ◽  
Vol 103 (9) ◽  
Author(s):  
Chang-Yuan Yao ◽  
Xiang-Gan Liu ◽  
Gui-Jun Ding

2021 ◽  
Vol 183 (2) ◽  
Author(s):  
D. Benedetto ◽  
E. Caglioti ◽  
S. Caracciolo ◽  
M. D’Achille ◽  
G. Sicuro ◽  
...  

AbstractWe consider the assignment problem between two sets of N random points on a smooth, two-dimensional manifold $$\Omega $$ Ω of unit area. It is known that the average cost scales as $$E_{\Omega }(N)\sim {1}/{2\pi }\ln N$$ E Ω ( N ) ∼ 1 / 2 π ln N with a correction that is at most of order $$\sqrt{\ln N\ln \ln N}$$ ln N ln ln N . In this paper, we show that, within the linearization approximation of the field-theoretical formulation of the problem, the first $$\Omega $$ Ω -dependent correction is on the constant term, and can be exactly computed from the spectrum of the Laplace–Beltrami operator on $$\Omega $$ Ω . We perform the explicit calculation of this constant for various families of surfaces, and compare our predictions with extensive numerics.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Hyunseok Lee ◽  
Lee-Chae Jang

Abstract Dedekind sums occur in the transformation behavior of the logarithm of the Dedekind eta-function under substitutions from the modular group. In 1892, Dedekind showed a reciprocity relation for the Dedekind sums. Apostol generalized Dedekind sums by replacing the first Bernoulli function appearing in them by any Bernoulli functions and derived a reciprocity relation for the generalized Dedekind sums. In this paper, we consider the poly-Dedekind sums obtained from the Dedekind sums by replacing the first Bernoulli function by any type 2 poly-Bernoulli functions of arbitrary indices and prove a reciprocity relation for the poly-Dedekind sums.


2020 ◽  
Vol 32 (3) ◽  
pp. 541-552
Author(s):  
Mei Ling Jin

AbstractWe obtain approximation bounds for products of quasimodes for the Laplace–Beltrami operator on compact Riemannian manifolds of all dimensions without boundary. We approximate the products of quasimodes uv by a low-degree vector space {B_{n}}, and we prove that the size of the space {\dim(B_{n})} is small. In this paper, we first study bilinear quasimode estimates of all dimensions {d=2,3}, {d=4,5} and {d\geq 6}, respectively, to make the highest frequency disappear from the right-hand side. Furthermore, the result of the case {\lambda=\mu} of bilinear quasimode estimates improves {L^{4}} quasimodes estimates of Sogge and Zelditch in [C. D. Sogge and S. Zelditch, A note on L^{p}-norms of quasi-modes, Some Topics in Harmonic Analysis and Applications, Adv. Lect. Math. (ALM) 34, International Press, Somerville 2016, 385–397] when {d\geq 8}. And on this basis, we give approximation bounds in {H^{-1}}-norm. We also prove approximation bounds for the products of quasimodes in {L^{2}}-norm using the results of {L^{p}}-estimates for quasimodes in [M. Blair, Y. Sire and C. D. Sogge, Quasimode, eigenfunction and spectral projection bounds for Schrodinger operators on manifolds with critically singular potentials, preprint 2019, https://arxiv.org/abs/1904.09665]. We extend the results of Lu and Steinerberger in [J. F. Lu and S. Steinerberger, On pointwise products of elliptic eigenfunctions, preprint 2018, https://arxiv.org/abs/1810.01024v2] to quasimodes.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1254
Author(s):  
Xue Han ◽  
Xiaofei Yan ◽  
Deyu Zhang

Let Pc(x)={p≤x|p,[pc]areprimes},c∈R+∖N and λsym2f(n) be the n-th Fourier coefficient associated with the symmetric square L-function L(s,sym2f). For any A>0, we prove that the mean value of λsym2f(n) over Pc(x) is ≪xlog−A−2x for almost all c∈ε,(5+3)/8−ε in the sense of Lebesgue measure. Furthermore, it holds for all c∈(0,1) under the Riemann Hypothesis. Furthermore, we obtain that asymptotic formula for λf2(n) over Pc(x) is ∑p,qprimep≤x,q=[pc]λf2(p)=xclog2x(1+o(1)), for almost all c∈ε,(5+3)/8−ε, where λf(n) is the normalized n-th Fourier coefficient associated with a holomorphic cusp form f for the full modular group.


2021 ◽  
Vol 86 (3) ◽  
Author(s):  
Diego Álvarez ◽  
Pedro González-Rodríguez ◽  
Manuel Kindelan

Sign in / Sign up

Export Citation Format

Share Document