7 Canonical quantization

2021 ◽  
pp. 231-310
2016 ◽  
Vol 31 (02n03) ◽  
pp. 1641031 ◽  
Author(s):  
S. P. Gavrilov ◽  
D. M. Gitman

We consider QED with strong external backgrounds that are concentrated in restricted space areas. The latter backgrounds represent a kind of spatial x-electric potential steps for charged particles. They can create particles from the vacuum, the Klein paradox being closely related to this process. We describe a canonical quantization of the Dirac field with x-electric potential step in terms of adequate in- and out-creation and annihilation operators that allow one to have consistent particle interpretation of the physical system under consideration and develop a nonperturbative (in the external field) technics to calculate scattering, reflection, and electron-positron pair creation. We resume the physical impact of this development.


2015 ◽  
Vol 12 (08) ◽  
pp. 1560016 ◽  
Author(s):  
Víctor Aldaya ◽  
Julio Guerrero ◽  
Francisco F. Lopez-Ruiz ◽  
Francisco Cossío

We face a revision of the role of symmetries of a physical system aiming at characterizing the corresponding Solution Manifold (SM) by means of Noether invariants as a preliminary step towards a proper, non-canonical, quantization. To this end, "point symmetries" of the Lagrangian are generally not enough, and we must resort to the more general concept of contact symmetries. They are defined in terms of the Poincaré–Cartan form, which allows us, in turn, to find the symplectic structure on the SM, through some sort of Hamilton–Jacobi (HJ) transformation. These basic symmetries are realized as Hamiltonian vector fields, associated with (coordinate) functions on the SM, lifted back to the Evolution Manifold through the inverse of this HJ mapping, that constitutes an inverse of the Noether Theorem. The specific examples of a particle moving on S3, at the mechanical level, and nonlinear SU(2)-sigma model in field theory are sketched.


1991 ◽  
Vol 06 (21) ◽  
pp. 3823-3841 ◽  
Author(s):  
FUAD M. SARADZHEV

For the chiral Schwinger model, the canonical quantization formulation consistent with the Gauss law constraint is developed. This requires modification of the canonical variables of the model. The formulation presented is unitary and gauge-invariant under modified gauge transformations. The bound state spectrum of the model is established.


2011 ◽  
Vol 26 (26) ◽  
pp. 4647-4660
Author(s):  
GOR SARKISSIAN

In this paper we perform canonical quantization of the product of the gauged WZW models on a strip with boundary conditions specified by permutation branes. We show that the phase space of the N-fold product of the gauged WZW model G/H on a strip with boundary conditions given by permutation branes is symplectomorphic to the phase space of the double Chern–Simons theory on a sphere with N holes times the time-line with G and H gauge fields both coupled to two Wilson lines. For the special case of the topological coset G/G we arrive at the conclusion that the phase space of the N-fold product of the topological coset G/G on a strip with boundary conditions given by permutation branes is symplectomorphic to the phase space of Chern–Simons theory on a Riemann surface of the genus N-1 times the time-line with four Wilson lines.


1996 ◽  
Vol 53 (6) ◽  
pp. 3156-3161 ◽  
Author(s):  
Guillermo A. Mena Marugán

1985 ◽  
Vol 28 (7) ◽  
pp. 554-556 ◽  
Author(s):  
D. M. Gitman ◽  
S. L. Lyakhovich ◽  
I. V. Tyutin

2011 ◽  
Vol 25 (06) ◽  
pp. 413-418
Author(s):  
JI-SUO WANG ◽  
KE-ZHU YAN ◽  
BAO-LONG LIANG

Starting from the classical equation of the motion of a domain wall in the ferromagnetic systems, the quantum energy levels of the wall and the corresponding eigenfunctions in the case of considering damping term are given by using the canonical quantization method and unitary transformation. The quantum fluctuations of displacement and momentum of the moving wall has also been given as well as the uncertain relation.


1987 ◽  
Vol 65 (4) ◽  
pp. 395-402 ◽  
Author(s):  
R. Manka ◽  
J. Sladkowski

The variational approach to the Glashow–Weinberg–Salam model, based on canonical quantization, is presented. It is shown that taking into consideration the Becchi–Rouet–Stora symmetry leads to the correct, temperature-dependent, effective potential. This generalization of the Weinberg–Coleman potential leads to a phase transition of the first kind.


Sign in / Sign up

Export Citation Format

Share Document