scholarly journals Comparison of higher harmonic contents in salient pole synchronous generator with different rotor construction

2017 ◽  
Vol 66 (1) ◽  
pp. 121-139 ◽  
Author(s):  
Krzysztof Ludwinek ◽  
Roman Nadolski ◽  
Jan Staszak

Abstract The paper presents a comparison of higher harmonics in induced phase voltages of a stator winding in the no-load state of a three-phase 5.5 kVA salient pole synchronous generator. The comparison is carried out for the synchronous generator with different salient pole rotor constructions: a non-skewed solid rotor, a non-skewed solid rotor with radial incisions, and a laminated electrotechnical steel rotor with skewed slots and damping bars. The calculations of higher harmonics are based on the magnetic field distributions in the air gap, which are carried out in a 2D model in a FEMM program and on the induced voltage waveforms in the stator windings registered during experimental investigations of the 5.5 kVA salient pole synchronous generator in the no-load state.

2021 ◽  
Vol 320 ◽  
pp. 01015
Author(s):  
E.P. Matafonova ◽  
S.B. Burkhanov

To control the intensity of the light flux when fishing saury it is necessary to widely change the voltage of the lighting fishing equipment. It is reasonable to carry out this by controlling additionally installed thyristor regulators supplying individual symmetric three-phase groups of light sources that will ensure balanced loading of the synchronous generator stator windings. In this research the features of using a thyristor voltage regulator in a four-wire system of ship power supply are studied based on mathematical analysis, conclusions are made using computer modeling and the use of current limiting reactors is justified.


Author(s):  
Kwok-Wai K. W. Louie

This paper reviews a phase-domain synchronous generator model and investigates the effects of the non-uniform air gap saturation on the performance of a three-phase salient pole synchronous generator during a single-phase-to-ground short circuit. Accurate representation of magnetic saturation effects in synchronous machines is required when studying their behavior closely. Modeling a synchronous machine directly in the physical phase-domain instead of the dqo-coordinates permits an easy and accurate representation of magnetic saturation in the machine. The reviewed model has been verified to be accurate and effective in representing the behavior of synchronous generators. The test results have showed the strong impact of the non-uniform air gap on the magnetic saturation in a three-phase salient pole synchronous generator.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4416
Author(s):  
Szymon Racewicz ◽  
Filip Kutt ◽  
Michał Michna ◽  
Łukasz Sienkiewicz

This article presents a comparison between integer and non-integer order modelling of a synchronous generator, in the frequency domain as well as in the time domain. The classical integer order model was compared to one containing half-order systems. The half-order systems are represented in a Park d-q axis equivalent circuit as impedances modelled by half-order transmittances. Using a direct method based on the approximation of the half-order derivatives by the Grünwald–Letnikov definition, a state-space equation system was solved. For both models, a computational program written in Matlab® software was used. For the purpose of time domain simulation, the machine models were connected to an electric load composed of an RL circuit. To validate and compare both models, simulation results of a three-phase short-circuit and a no-load voltage recovery were compared with corresponding measurements performed on a solid salient-pole synchronous generator of 125 kVA.


2020 ◽  
pp. 0309524X2098177
Author(s):  
Mohamed Metwally Mahmoud ◽  
Hossam S Salama ◽  
Mohamed M Aly ◽  
Abdel-Moamen M Abdel-Rahim

Fault ride-through (FRT) capability enhancement for the growth of renewable energy generators has become a crucial issue for their incorporation into the electricity grid to provide secure, reliable, and efficient electricity. This paper presents a new FRT capability scheme for a permanent magnet synchronous generator (PMSG)-based wind energy generation system using a hybrid solution. The hybrid solution is a combination of a braking chopper (BC) and a fuzzy logic controller (FLC). All proportional-integral (PI) controllers which control the generator and grid side converters are replaced with FLC. Moreover, a BC system is connected to the dc link to improve the dynamic response of the PMSG during fault conditions. The PMSG was evaluated on a three-phase fault that occurs on an electrical network in three scenarios. In the first two scenarios, a BC is used with a PI controller and FLC respectively. While the third scenario uses only FLC without a BC. The obtained results showed that the suggested solution can not only enhance the FRT capability of the PMSG but also can diminish the occurrence of hardware systems and reduce their impact on the PMSG system. The simulation tests are performed using MATLAB/SIMULINK software.


2021 ◽  
Vol 11 (10) ◽  
pp. 4567
Author(s):  
Xiaoqing Zhang ◽  
Yaowu Wang

An effective method is proposed in this paper for calculating the transient magnetic field and induced voltage in the photovoltaic bracket system under lightning stroke. Considering the need for the lightning current responses on various branches of the photovoltaic bracket system, a brief outline is given to the equivalent circuit model of the photovoltaic bracket system. The analytic formulas of the transient magnetic field are derived from the vector potential for the tilted, vertical and horizontal branches in the photovoltaic bracket system. With a time–space discretization scheme put forward for theses formulas, the magnetic field distribution in an assigned spatial domain is determined on the basis of the lightning current responses. The magnetic linkage passing through a conductor loop is evaluated by the surface integral of the magnetic flux density and the induced voltage is obtained from the time derivative of the magnetic linkage. In order to check the validity of the proposed method, an experiment is made on a reduced-scale photovoltaic bracket system. Then, the proposed method is applied to an actual photovoltaic bracket system. The calculations are performed for the magnetic field distributions and induced voltages under positive and negative lightning strokes.


2017 ◽  
Vol 27 (11) ◽  
pp. e2401
Author(s):  
Nur Iylia Shah Riman ◽  
Mohd Faris Abdullah ◽  
Mohd Fakhizan Romlie ◽  
Zuhairi Baharudin

Sign in / Sign up

Export Citation Format

Share Document