scholarly journals Tangent Lines and Lipschitz Differentiability Spaces

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Fabio Cavalletti ◽  
Tapio Rajala

AbstractWe study the existence of tangent lines, i.e. subsets of the tangent space isometric to the real line, in tangent spaces of metric spaces.We first revisit the almost everywhere metric differentiability of Lipschitz continuous curves. We then show that any blow-up done at a point of metric differentiability and of density one for the domain of the curve gives a tangent line. Metric differentiability enjoys a Borel measurability property and this will permit us to use it in the framework of Lipschitz differentiability spaces.We show that any tangent space of a Lipschitz differentiability space contains at least n distinct tangent lines, obtained as the blow-up of n Lipschitz curves, where n is the dimension of the local measurable chart. Under additional assumptions on the space, such as curvature lower bounds, these n distinct tangent lines span an n-dimensional part of the tangent space.

2001 ◽  
Vol 11 (04) ◽  
pp. 401-421 ◽  
Author(s):  
ALEJANDRO LÓPEZ-ORTIZ ◽  
SVEN SCHUIERER

We present lower bounds for on-line searching problems in two special classes of simple polygons called streets and generalized streets. In streets we assume that the location of the target is known to the robot in advance and prove a lower bound of [Formula: see text] on the competitive ratio of any deterministic search strategy—which can be shown to be tight. For generalized streets we show that if the location of the target is not known, then there is a class of orthogonal generalized streets for which the competitive ratio of any search strategy is at least [Formula: see text] in the L2-metric—again matching the competitive ratio of the best known algorithm. We also show that if the location of the target is known, then the competitive ratio for searching in generalized streets in the L1-metric is at least 9 which is tight as well. The former result is based on a lower bound on the average competitive ratio of searching on the real line if an upper bound of D to the target is given. We show that in this case the average competitive ratio is at least 9-O(1/ log D).


Author(s):  
Z. M. Franco ◽  
Hans G. Kaper ◽  
Man Kam Kwong ◽  
A. Zettl

SynopsisExplicit formulae and numerical values for upper and lower bounds for the best constant in Landau/s inequality on the real line are given. For p > 3, the value of the upper bound is less than the value of the best constant conjectured by Gindler and Goldstein (J. Analyse Math. 28 (1975), 213–238).


2020 ◽  
Vol 484 (1) ◽  
pp. 123729
Author(s):  
Gökalp Alpan ◽  
Maxim Zinchenko
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mark Bun ◽  
Thomas Steinke ◽  
Jonathan Ullman

We consider the problem of answering queries about a sensitive dataset subject to differential privacy. The queries may be chosen adversarially from a larger set $Q$ of allowable queries in one of three ways, which we list in order from easiest to hardest to answer:Offline: The queries are chosen all at once and the differentially private mechanism answers the queries in a single batch. Online: The queries are chosen all at once, but the mechanism only receives the queries in a streaming fashion and must answer each query before seeing the next query. Adaptive: The queries are chosen one at a time and the mechanism must answer each query before the next query is chosen. In particular, each query may depend on the answers given to previous queries.Many differentially private mechanisms are just as efficient in the adaptive model as they are in the offline model. Meanwhile, most lower bounds for differential privacy hold in the offline setting. This suggests that the three models may be equivalent. We prove that these models are all, in fact, distinct. Specifically, we show that there is a family of statistical queries such that exponentially more queries from this family can be answered in the offline model than in the online model. We also exhibit a family of search queries such that exponentially more queries from this family can be answered in the online model than in the adaptive model. We also investigate whether such separations might hold for simple queries like threshold queries over the real line.


2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


2000 ◽  
Vol 26 (1) ◽  
pp. 237
Author(s):  
Duszyński
Keyword(s):  

1982 ◽  
Vol 8 (1) ◽  
pp. 67 ◽  
Author(s):  
Thomson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document