scholarly journals Hölder Parameterization of Iterated Function Systems and a Self-Aflne Phenomenon

2021 ◽  
Vol 9 (1) ◽  
pp. 90-119
Author(s):  
Matthew Badger ◽  
Vyron Vellis

Abstract We investigate the Hölder geometry of curves generated by iterated function systems (IFS) in a complete metric space. A theorem of Hata from 1985 asserts that every connected attractor of an IFS is locally connected and path-connected. We give a quantitative strengthening of Hata’s theorem. First we prove that every connected attractor of an IFS is (1/s)-Hölder path-connected, where s is the similarity dimension of the IFS. Then we show that every connected attractor of an IFS is parameterized by a (1/ α)-Hölder curve for all α > s. At the endpoint, α = s, a theorem of Remes from 1998 already established that connected self-similar sets in Euclidean space that satisfy the open set condition are parameterized by (1/s)-Hölder curves. In a secondary result, we show how to promote Remes’ theorem to self-similar sets in complete metric spaces, but in this setting require the attractor to have positive s-dimensional Hausdorff measure in lieu of the open set condition. To close the paper, we determine sharp Hölder exponents of parameterizations in the class of connected self-affine Bedford-McMullen carpets and build parameterizations of self-affine sponges. An interesting phenomenon emerges in the self-affine setting. While the optimal parameter s for a self-similar curve in ℝ n is always at most the ambient dimension n, the optimal parameter s for a self-affine curve in ℝ n may be strictly greater than n.

2019 ◽  
Vol 150 (1) ◽  
pp. 261-275 ◽  
Author(s):  
Sascha Troscheit

AbstractThe class of stochastically self-similar sets contains many famous examples of random sets, for example, Mandelbrot percolation and general fractal percolation. Under the assumption of the uniform open set condition and some mild assumptions on the iterated function systems used, we show that the quasi-Assouad dimension of self-similar random recursive sets is almost surely equal to the almost sure Hausdorff dimension of the set. We further comment on random homogeneous and V -variable sets and the removal of overlap conditions.


2011 ◽  
Vol 63 (3) ◽  
pp. 648-688 ◽  
Author(s):  
Sze-Man Ngai

AbstractWe set up a framework for computing the spectral dimension of a class of one-dimensional self-similar measures that are defined by iterated function systems with overlaps and satisfy a family of second-order self-similar identities. As applications of our result we obtain the spectral dimension of important measures such as the infinite Bernoulli convolution associated with the golden ratio and convolutions of Cantor-type measures. The main novelty of our result is that the iterated function systems we consider are not post-critically finite and do not satisfy the well-known open set condition.


2011 ◽  
Vol 32 (3) ◽  
pp. 1101-1115 ◽  
Author(s):  
HUA QIU

AbstractIn this paper, we focus on the packing measures of self-similar sets. Let K be a self-similar set whose Hausdorff dimension and packing dimension equal s. We state that if K satisfies the strong open set condition with an open set 𝒪, then for each open ball B(x,r)⊂𝒪 centred in K, where 𝒫s denotes the s-dimensional packing measure. We use this inequality to obtain some precise density theorems for the packing measures of self-similar sets. These theorems can be used to compute the exact value of the s-dimensional packing measure 𝒫s (K) of K. Moreover, by using the above results, we show the continuity of the packing measure function of the attractors on the space of self-similar iterated function systems satisfying the strong separation condition. This result gives a complete answer to a question posed by Olsen in [15].


2001 ◽  
Vol 63 (3) ◽  
pp. 655-672 ◽  
Author(s):  
SZE-MAN NGAI ◽  
YANG WANG

The notion of ‘finite type’ iterated function systems of contractive similitudes is introduced, and a scheme for computing the exact Hausdorff dimension of their attractors in the absence of the open set condition is described. This method extends a previous one by Lalley, and applies not only to the classes of self-similar sets studied by Edgar, Lalley, Rao and Wen, and others, but also to some new classes that are not covered by the previous ones.


2018 ◽  
Vol 40 (1) ◽  
pp. 221-232
Author(s):  
SABRINA KOMBRINK ◽  
STEFFEN WINTER

We show that any non-trivial self-similar subset of the real line that is invariant under a lattice iterated function system (IFS) satisfying the open set condition (OSC) is not Minkowski measurable. So far, this has only been known for special classes of such sets. Thus, we provide the last puzzle-piece in proving that under the OSC a non-trivial self-similar subset of the real line is Minkowski measurable if and only if it is invariant under a non-lattice IFS, a 25-year-old conjecture.


2018 ◽  
Vol 167 (3) ◽  
pp. 567-597 ◽  
Author(s):  
SIMON BAKER

AbstractKhintchine's theorem is a classical result from metric number theory which relates the Lebesgue measure of certain limsup sets with the convergence/divergence of naturally occurring volume sums. In this paper we ask whether an analogous result holds for iterated function systems (IFS's). We say that an IFS is approximation regular if we observe Khintchine type behaviour, i.e., if the size of certain limsup sets defined using the IFS is determined by the convergence/divergence of naturally occurring sums. We prove that an IFS is approximation regular if it consists of conformal mappings and satisfies the open set condition. The divergence condition we introduce incorporates the inhomogeneity present within the IFS. We demonstrate via an example that such an approach is essential. We also formulate an analogue of the Duffin–Schaeffer conjecture and show that it holds for a set of full Hausdorff dimension.Combining our results with the mass transference principle of Beresnevich and Velani [4], we prove a general result that implies the existence of exceptional points within the attractor of our IFS. These points are exceptional in the sense that they are “very well approximated”. As a corollary of this result, we obtain a general solution to a problem of Mahler, and prove that there are badly approximable numbers that are very well approximated by quadratic irrationals.The ideas put forward in this paper are introduced in the general setting of iterated function systems that may contain overlaps. We believe that by viewing iterated function systems from the perspective of metric number theory, one can gain a greater insight into the extent to which they overlap. The results of this paper should be interpreted as a first step in this investigation.


2017 ◽  
Vol 39 (1) ◽  
pp. 1-18 ◽  
Author(s):  
SIMON BAKER ◽  
JONATHAN M. FRASER ◽  
ANDRÁS MÁTHÉ

It is known that if the underlying iterated function system satisfies the open set condition, then the upper box dimension of an inhomogeneous self-similar set is the maximum of the upper box dimensions of the homogeneous counterpart and the condensation set. First, we prove that this ‘expected formula’ does not hold in general if there are overlaps in the construction. We demonstrate this via two different types of counterexample: the first is a family of overlapping inhomogeneous self-similar sets based upon Bernoulli convolutions; and the second applies in higher dimensions and makes use of a spectral gap property that holds for certain subgroups of $\text{SO}(d)$ for $d\geq 3$. We also obtain new upper bounds, derived using sumsets, for the upper box dimension of an inhomogeneous self-similar set which hold in general. Moreover, our counterexamples demonstrate that these bounds are optimal. In the final section we show that if the weak separation property is satisfied, that is, the overlaps are controllable, then the ‘expected formula’ does hold.


2020 ◽  
pp. 1-22
Author(s):  
IAN D. MORRIS ◽  
CAGRI SERT

Abstract A classical theorem of Hutchinson asserts that if an iterated function system acts on $\mathbb {R}^{d}$ by similitudes and satisfies the open set condition then it admits a unique self-similar measure with Hausdorff dimension equal to the dimension of the attractor. In the class of measures on the attractor, which arise as the projections of shift-invariant measures on the coding space, this self-similar measure is the unique measure of maximal dimension. In the context of affine iterated function systems it is known that there may be multiple shift-invariant measures of maximal dimension if the linear parts of the affinities share a common invariant subspace, or more generally if they preserve a finite union of proper subspaces of $\mathbb {R}^{d}$ . In this paper we give an example where multiple invariant measures of maximal dimension exist even though the linear parts of the affinities do not preserve a finite union of proper subspaces.


2010 ◽  
Vol 62 (3) ◽  
pp. 543-562
Author(s):  
Kevin G. Hare

AbstractThis paper answers a question of Broomhead, Montaldi and Sidorov about the existence of gaskets of a particular type related to the Sierpiński sieve. These gaskets are given by iterated function systems that do not satisfy the open set condition. We use the methods of Ngai and Wang to compute the dimension of these gaskets.


Fractals ◽  
2018 ◽  
Vol 26 (03) ◽  
pp. 1850034
Author(s):  
JIAN LU ◽  
BO TAN ◽  
YURU ZOU

For [Formula: see text], a middle-[Formula: see text] Sierpinski carpet [Formula: see text] is defined as the self-similar set generated by the iterated function system (IFS) [Formula: see text], where [Formula: see text] is defined by [Formula: see text] Here, [Formula: see text]. In this paper, for [Formula: see text], we investigated the equivalent characterizations of the intersection [Formula: see text] being a generalized Moran set. Furthermore, under some conditions, we show that [Formula: see text] can be represented as a graph-directed set satisfying the open set condition (OSC), and then the Hausdorff dimension can be explicitly calculated.


Sign in / Sign up

Export Citation Format

Share Document