scholarly journals Hot Deformation Of 6xxx Series Aluminium Alloys

2015 ◽  
Vol 60 (2) ◽  
pp. 1079-1084 ◽  
Author(s):  
G. Mrówka-Nowotnik ◽  
J. Sieniawski ◽  
S. Kotowski ◽  
A. Nowotnik ◽  
M. Motyka

Abstract The hot deformation behavior of the 6xxx aluminum alloys was investigated by compression tests in the temperature range 100°C-375°C and strain rate range 10−4s−1 and 4×10−4s−1 using dilatometer DIL 805 BÄHR Thermoanalyse equipped with accessory attachment deformation allows the process to execute thermoplastic in vacuum and inert gas atmosphere. Associated microstructural changes of characteristic states of examined alloys were studied by using the transmission electron microscope (TEM). The results show that the stress level decreases with increasing deformation temperature and deformation rate. And was also found that the activation energy Q strongly depends on both, the temperature and rate of deformation. The results of TEM observation showing that the dynamic flow softening is mainly as the result of dynamic recovery and recrystallization of 6xxx aluminium alloys.

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1432-1437
Author(s):  
SHENGLI GUO ◽  
DEFU LI ◽  
DONG CHEN ◽  
HAOWEI WANG

The hot deformation behavior of in situ TiB 2 reinforced 6351 Al composites synthesized by mixed salt reaction method was investigated by compression tests in the temperature range of 300-550°C and strain rate range of 0.001-10 s-1. The microstructure evolution during compression was observed by employing transmission electron microscopy (TEM). The results show that, the flow stress decreases with decreasing strain rate and increasing temperature, and the activation energy is about 169.98 kJ/mol. Microstructure observation indicates that the complex dislocation structures were formed around the TiB 2 particulate at the lower temperature and the lower strain rate and their density is reducing with increasing temperature. Dynamic recovery and recrystalized structures were observed in the lower and higher deformation temperature, respectively. At the higher strain rate, the interface separation between TiB 2 particulate and Al matrix alloy and TiB 2 particulate cracking were found in this study. The main restoration mechanisms of TiB 2/6351 composites during hot deformation are dynamic recovery and dynamic recrystallization.


2013 ◽  
Vol 815 ◽  
pp. 37-42 ◽  
Author(s):  
Yu Juan Guo ◽  
Lei Deng ◽  
Xin Yun Wang ◽  
Jun Song Jin ◽  
Wen Wu Zhou

The hot deformation behavior of 7050aluminum alloy was investigated by hot compression tests in the temperature range of 573-773K and the strain rate ranging from 0.001s-1to 10 s-1.The flow curves showed that the flow stresses increase with the increase of strain rate or the decrease of temperature.In order to determine the optimal processing conditions, hot processing maps were established based on experimental data and Dynamic Materials Model. The processing maps indicate that instability occur at low temperature and high strain rate. The optimum hot working region is the domain in the temperature range of 673-723K and strain rate range of 0.001-0.01 s-1,where typical recrystallization was observed in the optical microstructures.


2011 ◽  
Vol 687 ◽  
pp. 467-473
Author(s):  
Ji Heng Li ◽  
Xue Xu Gao ◽  
Jie Zhu ◽  
Xiaoqian Bao ◽  
Mao Cai Zhang

In this work, the hot deformation behavior of Fe83Ga17alloy with 1.0 at.% B addition was investigated by plane strain compression tests on a Gleeble-1500 hot simulation test machine in the deformation temperature range of 350 to 900 °C. The effects of strain rate range 0.1-10 s-1on flow stress and microstructure were also studied. It was indicated that as the temperature increases, significant softening of the material occurred, and significant dynamic recovery at low strain rate (0.1 s-1) and recrystallization at high strain rate (10 s-1) occurred during deformation at 900 °C. The results also suggested that deformation mechanism under low temperature (~500°C) was twinning. The hot deformation activation energy (Q) of the Fe83Ga17with 1.0 at.%B alloy was calculated to be 295.3 kJ/mol.


Author(s):  
YL Wang ◽  
Y Li ◽  
H Zhang ◽  
JL Yang ◽  
XD Ma ◽  
...  

Quasi-static hot deformation behavior of a novel third-generation Ni-based powder metallurgy superalloy A3 was investigated by hot compression tests and microscopy. The activation energy for hot working of the experimental alloy was about 867 kJ/mol. An instability domain existed in the processing map when the strain was 0.2, implying a plastic instability at the temperature range of 1080–1100°C and the strain rate range of 0.016–0.1 s−1. The power dissipation efficiency in processing maps indicated that optimum parameters for large deformation could be controlled at the temperature range of 1000–1030°C and the strain rate range of 0.001–0.01 s−1. It provided a reliable suggestion for hot processing during the manufacturing of such superalloy.


2015 ◽  
Vol 1089 ◽  
pp. 37-41
Author(s):  
Jiang Wang ◽  
Sheng Li Guo ◽  
Sheng Pu Liu ◽  
Cheng Liu ◽  
Qi Fei Zheng

The hot deformation behavior of SiC/6168Al composite was studied by means of hot compression tests in the temperature range of 300-450 °C and strain rate range of 0.01-10 s-1. The constitutive model was developed to predict the stress-strain curves of this composite during hot deformation. This model was established by considering the effect of the strain on material constants calculated by using the Zenter-Hollomon parameter in the hyperbolic Arrhenius-type equation. It was found that the relationship of n, α, Q, lnA and ε could be expressed by a five-order polynomial. The stress-strain curves obtained by this model showed a good agreement with experimental results. The proposed model can accurately describe the hot flow behavior of SiC/6168Al composite, and can be used to numerically analyze the hot forming processes.


2016 ◽  
Vol 35 (6) ◽  
pp. 599-605 ◽  
Author(s):  
Fuqiang Zhen ◽  
Jianlin Sun ◽  
Jian Li

AbstractThe flow behavior of 3104 aluminum alloy was investigated at temperatures ranging from 250°C to 500°C, and strain rates from 0.01 to 10 s−1 by isothermal compression tests. The true stress–strain curves were obtained from the measured load–stroke data and then modified by friction and temperature correction. The effects of temperature and strain rate on hot deformation behavior were represented by Zener–Hollomon parameter including Arrhenius term. Additionally, the influence of strain was incorporated considering the effect of strain on material constants. The derived constitution equation was applied to the finite element analysis of hot compression. The results show that the simulated force is consistent with the measured one. Consequently, the developed constitution equation is valid and feasible for numerical simulation in hot deformation process of 3104 alloy.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1743 ◽  
Author(s):  
Lei Luo ◽  
Zhiyi Liu ◽  
Song Bai ◽  
Juangang Zhao ◽  
Diping Zeng ◽  
...  

The hot deformation behavior of an Al-Zn-Mg-Cu alloy was investigated by hot compression test at deformation temperatures varying from 320 to 440 °C with strain rates ranging from 0.01 to 10 s−1. The results show that the Mg(Zn, Cu)2 particles as a result of the sufficient static precipitation prior to hot compression have an influence on flow softening. A constitutive model compensated with strain was developed from the experimental results, and it proved to be accurate for predicting the hot deformation behavior. Processing maps at various strains were established. The microstructural evolution demonstrates that the dominant dynamic softening mechanism stems from dynamic recovery (DRV) and partial dynamic recrystallization (DRX). The recrystallization mechanism is continuous dynamic recrystallization (CDRX). The microstructure observations are in good agreement with the results of processing maps. On account of the processing map and microstructural observation, the optimal hot processing parameters at a strain of 0.6 are at deformation temperature range of 390–440 °C and strain rate range of 0.010–0.316 s−1 with a peak efficiency of 0.390.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2042 ◽  
Author(s):  
Feng Liu ◽  
Jimiao Ma ◽  
Lijun Peng ◽  
Guojie Huang ◽  
Wenjing Zhang ◽  
...  

The Cu-1.7Ni-1.4Co-0.65Si (wt%) alloy is hot compressed by a Gleeble-1500D machine under a temperature range of 760 to 970 °C and a strain rate range of 0.01 to 10 s−1. The flow stress increases with the extension of strain rate and decreases with the rising of deformation temperature. The dynamic recrystallization behavior happens during the hot compression deformation process. The hot deformation activation energy of the alloy can be calculated as 468.5 kJ/mol, and the high temperature deformation constitutive equation is confirmed. The hot processing map of the alloy is established on the basis of hot deformation behavior and hot working characteristics. With the optimal thermal deformation conditions of 940 to 970 °C and 0.01 to 10 s−1, the fine equiaxed grain and no holes are found in the matrix, which can provide significant guidance for hot deformation processing technology of Cu–Ni–Co–Si alloy.


2013 ◽  
Vol 709 ◽  
pp. 143-147 ◽  
Author(s):  
Tao Wang ◽  
Zhao Li ◽  
Shu Hong Fu ◽  
Yong Zhang ◽  
Yu Xin Zhao ◽  
...  

The hot deformation behavior of U720Li was investigated by isothermal compression tests at temperature ranging from 1060-1180°C and strain rate from 0.001s-1 to 20s-1. The flow stress-strain curves and microstructures were investigated and a constitutive equation was established. It is found that flow stress is sensitive to stain rate and deformation temperature greatly. The higher stain rate resultes in a larger fluctuation in flow stress. The hot deformation activation energy is determined to be 552.8kJ/mol. Grain size increases with increasing temperature and decreases firstly and then increases with increasing strain rate. U720Li alloy should be deformed below the solve temperature of γ primary phase with lower strain rate in order to obtain the even and fine grain size.


2013 ◽  
Vol 17 (5) ◽  
pp. 1523-1528
Author(s):  
Bao-Hua Jia ◽  
Wei-Dong Song ◽  
Hui-Ping Tang ◽  
Jian-Guo Ning

Isothermal compression tests of TC18 titanium alloy at the deformation temperatures ranging from 25?C to 800?C and strain rate ranging from 10-4 to 10-2 s-1 were conducted by using a WDW-300 electronic universal testing machine. The hot deformation behavior of TC18 was characterized based on an analysis of the true stress-true strain curves of TC18 titanium alloy. The curves show that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the strain rate play an important role in the flow stress when increasing the temperatures. By taking the effect of strain into account, an improved constitutive relationship was proposed based on the Arrhenius equation. By comparison with the experimental results, the model prediction agreed well with the experimental data, which demonstrated the established constitutive relationship was reliable and can be used to predict the hot deformation behavior of TC18 titanium alloy.


Sign in / Sign up

Export Citation Format

Share Document