scholarly journals Surface Quality Research for Selective Laser Melting of Ti-6Al-4V Alloy

2016 ◽  
Vol 61 (3) ◽  
pp. 1291-1296 ◽  
Author(s):  
M. Król ◽  
T. Tański

Abstract One of the innovative technology of producing the components is Selective Laser Melting (SLM) belongs to additive manufacturing techniques. SLM technology has already been successfully applied in the automotive, aerospace and medical industries. Despite progress in material flexibility and mechanical performances, relatively poor surface finish still presents a significant weakness in the SLM process. The scope of the present article is the study the influence of selective laser melting parameters such as laser power, scanning speed, exposure time and hatch spacing through additive manufacturing as well as the orientation of the model corresponding to the laser beam on the surface characteristic of the components made from Ti-6Al-4V alloy. By using optimized process parameters, a low surface roughness can be obtained. In research, the machine for the selective laser melting of metal powders Renishaw AM 125 device was used. Based on experiment plan, 32 models were produced, which were examined to define the surface roughness and thus represent an influence of process parameters and the orientation on the model surface quality. The article discusses the fundamental factors determining the roughness that gives invaluable knowledge to improve the surface quality of SLM parts.


Author(s):  
Filippo Simoni ◽  
Andrea Huxol ◽  
Franz-Josef Villmer

AbstractIn the last years, Additive Manufacturing, thanks to its capability of continuous improvements in performance and cost-efficiency, was able to partly replace and redefine well-established manufacturing processes. This research is based on the idea to achieve great cost and operational benefits especially in the field of tool making for injection molding by combining traditional and additive manufacturing in one process chain. Special attention is given to the surface quality in terms of surface roughness and its optimization directly in the Selective Laser Melting process. This article presents the possibility for a remelting process of the SLM parts as a way to optimize the surfaces of the produced parts. The influence of laser remelting on the surface roughness of the parts is analyzed while varying machine parameters like laser power and scan settings. Laser remelting with optimized parameter settings considerably improves the surface quality of SLM parts and is a great starting point for further post-processing techniques, which require a low initial value of surface roughness.



Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1228
Author(s):  
Junjie Jiang ◽  
Jianming Chen ◽  
Zhihao Ren ◽  
Zhongfa Mao ◽  
Xiangyu Ma ◽  
...  

With superior flexible manufacturing capability, selective laser melting (SLM) has attracted more and more attention in the aerospace, medical, and automotive industries. However, the poor quality of the lower surface in overhanging structures is still one of the factors that limits the wide application of SLM. In this work, the influence of process parameters and scanning strategy on the lower surface quality of SLMed TA15 (Ti-6Al-2Zr-1Mo-1V) titanium alloy parts were studied. The results showed that the laser surface energy density (EF) had a significant influence on the quality of the lower surface. Excessive EF led to obvious sinking of the molten pool and a serious slag hanging phenomenon. However, the too low EF easily contributed to the insufficient powder fusion in the lower surface area, which led to the agglomeration of a molten pool during core processing, resulting in slag hanging, pores, and powder spalling that reduced the quality of the lower surface. Moreover, the cross-remelting strategy and non-remelting strategy gained better surface quality at the low EF and high EF, respectively. In addition, it was found that the quality of the lower surface could be quickly and accurately evaluated by the cooling time of the molten pool during the processing of the lower surface. This research can increase the understanding of the forming mechanism of the lower surface and has certain guiding significance for the process optimization of the lower surface.







2019 ◽  
Vol 9 (6) ◽  
pp. 1256 ◽  
Author(s):  
Amal Charles ◽  
Ahmed Elkaseer ◽  
Lore Thijs ◽  
Veit Hagenmeyer ◽  
Steffen Scholz

Additive manufacturing provides a number of benefits in terms of infinite freedom to design complex parts and reduced lead-times while globally reducing the size of supply chains as it brings all production processes under one roof. However, additive manufacturing (AM) lags far behind conventional manufacturing in terms of surface quality. This proves a hindrance for many companies considering investment in AM. The aim of this work is to investigate the effect of varying process parameters on the resultant roughness of the down-facing surfaces in selective laser melting (SLM). A systematic experimental study was carried out and the effects of the interaction of the different parameters and their effect on the surface roughness (Sa) were analyzed. It was found that the interaction and interdependency between parameters were of greatest significance to the obtainable surface roughness, though their effects vary greatly depending on the applied levels. This behavior was mainly attributed to the difference in energy absorbed by the powder. Predictive process models for optimization of process parameters for minimizing the obtained Sa in 45° and 35° down-facing surface, individually, were achieved with average error percentages of 5% and 6.3%, respectively, however further investigation is still warranted.



Author(s):  
Luis E. Criales ◽  
Yiğit M. Arısoy ◽  
Tuğrul Özel

A prediction of the 2-D temperature profile and melt pool geometry for Selective Laser Melting (SLM) of Inconel 625 metal powder with a numerically-based approach for solving the heat conduction-diffusion equation was established in this paper. A finite element method solution of the governing equation was developed. A review of the current efforts in numerical modeling for laser-based additive manufacturing is presented. Initially, two-dimensional (2-D) temperature profiles along the scanning (x-direction) and hatch direction (y-direction) are calculated for a moving laser heat source to understand the temperature rise due to heating during SLM. The effects of varying laser power, scanning speed and the powder material’s density are analyzed. Based on the predicted temperature distributions, melt pool geometry, i.e. the locations at which melting of the powder material occurs, is determined. The results are chiefly compared against the published literature on melt pool data. The main goal of this research is to develop a computational tool with which investigation of the importance of various laser, material, and process parameters on the built dimensional quality in laser-based additive manufacturing becomes not only possible but also practical and reproducible.



Author(s):  
Shyang-Jye Chang ◽  
Zhi-Xuan Wei

Selective laser melting (SLM) is a powder-based additive manufacturing technology that can be used to fabricate high-density components with complex geometry. Several studies have investigated the process parameters that affect surface quality. However, most researchers have ignored the importance of the scanning strategy. In this study, the Taguchi method was used to investigate the relation between warpage and fundamental parameters (laser power, scanning speed, overlap, and scanning angle) to fabricate stable and undistorted specimens. Moreover, several scanning strategies (offset scanning, line scanning, meander scanning, meander scanning with hatch vector, and lightning scanning) were applied to explore the influences on surface quality. The results revealed that meander scanning and lightning scanning generated consistent specimens without large deformation. The process parameters, such as an increased 45° scanning direction and 30% overlap, optimized the surface quality. A lower scanning speed (500 mm/s) could generate lower Ra of specimens, with the exception of lightning scanning with an increased 45° scanning direction. This study may contribute to the growing understanding of the scanning strategy in SLM.



2018 ◽  
Vol 24 (1) ◽  
pp. 150-159 ◽  
Author(s):  
Zhonghua Li ◽  
Ibrahim Kucukkoc ◽  
David Z. Zhang ◽  
Fei Liu

Purpose Surface roughness is an important evaluation index for industrial components, and it strongly depends on the processing parameters for selective laser molten Ti6Al4V parts. This paper aims to obtain an optimum selective laser melting (SLM) parameter set to improve the surface roughness of Ti6Al4V samples. Design/methodology/approach A response surface methodology (RSM)-based approach is proposed to improve the surface quality of selective laser molten Ti6Al4V parts and understand the relationship between the SLM process parameters and the surface roughness. The main SLM parameters (i.e. laser power, scan speed and hatch spacing) are optimized, and Ti6Al4V parts are manufactured by the SLM technology with no post processes. Findings Optimum process parameters were obtained using the RSM method to minimise the roughness of the top and vertical side surfaces. Obtained parameter sets were evaluated based on their productivity and surface quality performance. The validation tests have been performed, and the results verified the effectivity of the proposed technique. It was also shown that the top and vertical sides must be handled together to obtain better top surface quality. Practical implications The obtained optimum SLM parameter set can be used in the manufacturing of Ti6Al4V components with high surface roughness requirement. Originality/value RSM is used to analyse and determine the optimal combination of SLM parameters with the aim of improving the surface roughness quality of Ti6Al4V components, for the first time in the literature. Also, this is the first study which aims to simultaneously optimise the surface quality of top and vertical sides of titanium alloys.



Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1042 ◽  
Author(s):  
Mugwagwa ◽  
Yadroitsev ◽  
Matope

Selective laser melting (SLM) is one of the most well-known additive manufacturing methods available for the fabrication of functional parts from metal powders. Although SLM is now an established metal additive manufacturing technique, its widespread application in industry is still hindered by inherent phenomena, one of which is high residual stresses. Some of the effects of residual stresses – such as warping and thermal stress-related cracking – cannot be corrected by post processing. Therefore, establishing input process parameter combinations that result in the least residual stress magnitudes and related distortions and/or cracking is critical. This paper presents the influence of laser power, scanning speed, and layer thickness on residual stresses, distortions and achievable density for maraging steel 300 steel parts in order to establish the most optimum input parameter combinations. An analysis of the interdependence between process outcomes shows that high residual stress magnitudes lead to high dimensional distortions in the finished parts, whilst porous parts suffer relatively lower residual stresses and associated distortions.



Sign in / Sign up

Export Citation Format

Share Document