scholarly journals Multiple Solutions for Superlinear Fractional Problems via Theorems of Mixed Type

2018 ◽  
Vol 18 (4) ◽  
pp. 799-817
Author(s):  
Vincenzo Ambrosio

AbstractIn this paper, we investigate the existence of multiple solutions for the following two fractional problems:\left\{\begin{aligned} \displaystyle(-\Delta_{\Omega})^{s}u-\lambda u&% \displaystyle=f(x,u)&&\displaystyle\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\text{in }\partial\Omega\end{% aligned}\right.\qquad\text{and}\qquad\left\{\begin{aligned} \displaystyle(-% \Delta_{\mathbb{R}^{N}})^{s}u-\lambda u&\displaystyle=f(x,u)&&\displaystyle% \text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\text{in }\mathbb{R}^{N}% \setminus\Omega,\end{aligned}\right.where{s\in(0,1)},{N>2s}, Ω is a smooth bounded domain of{\mathbb{R}^{N}}, and{f:\bar{\Omega}\times\mathbb{R}\to\mathbb{R}}is a superlinear continuous function which does not satisfy the well-known Ambrosetti–Rabinowitz condition. Here{(-\Delta_{\Omega})^{s}}is the spectral Laplacian and{(-\Delta_{\mathbb{R}^{N}})^{s}}is the fractional Laplacian in{\mathbb{R}^{N}}. By applying variational theorems of mixed type due to Marino and Saccon and the Linking Theorem, we prove the existence of multiple solutions for the above problems.

2020 ◽  
Vol 150 (5) ◽  
pp. 2682-2718 ◽  
Author(s):  
Boumediene Abdellaoui ◽  
Antonio J. Fernández

AbstractLet$\Omega \subset \mathbb{R}^{N} $, N ≽ 2, be a smooth bounded domain. For s ∈ (1/2, 1), we consider a problem of the form $$\left\{\begin{array}{@{}ll} (-\Delta)^s u = \mu(x)\, \mathbb{D}_s^{2}(u) + \lambda f(x), & {\rm in}\,\Omega, \\ u= 0, & {\rm in}\,\mathbb{R}^{N} \setminus \Omega,\end{array}\right.$$ where λ > 0 is a real parameter, f belongs to a suitable Lebesgue space, $\mu \in L^{\infty}$ and $\mathbb {D}_s^2$ is a nonlocal ‘gradient square’ term given by $$\mathbb{D}_s^2 (u) = \frac{a_{N,s}}{2} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}\,{\rm d}y.$$ Depending on the real parameter λ > 0, we derive existence and non-existence results. The proof of our existence result relies on sharp Calderón–Zygmund type regularity results for the fractional Poisson equation with low integrability data. We also obtain existence results for related problems involving different nonlocal diffusion terms.


2015 ◽  
Vol 4 (1) ◽  
pp. 37-58 ◽  
Author(s):  
Sarika Goyal ◽  
Konijeti Sreenadh

AbstractIn this article, we study the following p-fractional Laplacian equation: $ (P_{\lambda }) \quad -2\int _{\mathbb {R}^n}\frac{|u(y)-u(x)|^{p-2}(u(y)-u(x))}{|x-y|^{n+p\alpha }} dy = \lambda |u(x)|^{p-2} u(x) + b(x)|u(x)|^{\beta -2}u(x) \quad \text{in } \Omega , \quad u = 0 \quad \text{in }\mathbb {R}^n \setminus \Omega ,\, u\in W^{\alpha ,p}(\mathbb {R}^n), $ where Ω is a bounded domain in ℝn with smooth boundary, n > pα, p ≥ 2, α ∈ (0,1), λ > 0 and b : Ω ⊂ ℝn → ℝ is a sign-changing continuous function. We show the existence and multiplicity of non-negative solutions of (Pλ) with respect to the parameter λ, which changes according to whether 1 < β < p or p < β < p* with p* = np(n-pα)-1 respectively. We discuss both cases separately. Non-existence results are also obtained.


Filomat ◽  
2020 ◽  
Vol 34 (6) ◽  
pp. 1795-1807
Author(s):  
Lijuan Liu

We consider the fractional Laplacian with positive Dirichlet data { (-?)?/2 u = ?up in ?, u > 0 in ?, u = ? in Rn\?, where p > 1,0 < ? < min{2,n}, ? ? Rn is a smooth bounded domain, ? is a nonnegative function, positive somewhere and satisfying some other conditions. We prove that there exists ?* > 0 such that for any 0 < ? < ?*, the problem admits at least one positive classical solution; for ? > ?*, the problem admits no classical solution. Moreover, for 1 < p ? n+?/n-?, there exists 0 < ?? ? ?* such that for any 0 < ? < ??, the problem admits a second positive classical solution. From the results obtained, we can see that the existence results of the fractional Laplacian with positive Dirichlet data are quite different from the fractional Laplacian with zero Dirichlet data.


1986 ◽  
Vol 102 (3-4) ◽  
pp. 327-343 ◽  
Author(s):  
Otared Kavian

SynopsisLet d ≧ 1 be an integer and ω ⊂ℝd a smooth bounded domain and consider the elliptic equation − Δu = g(u) on Ω = ℝ2 × ω. We prove that under (almost) necessary and sufficient conditions on the continuous function g: ℝm→ ℝm the above equation has a minimum-action solution.


2014 ◽  
Vol 14 (2) ◽  
Author(s):  
T. Godoy ◽  
U. Kaufmann

AbstractLet Ω be a smooth bounded domain in RN and let m be a possibly discontinuous and unbounded function that changes sign in Ω. Let f : [0,∞) → [0,∞) be a nondecreasing continuous function such that k


2020 ◽  
Vol 25 (1) ◽  
pp. 1-20
Author(s):  
Jinguo Zhang ◽  
Tsing-San Hsu

In this paper, we deal with a class of fractional Laplacian system with critical Sobolev-Hardy exponents and sign-changing weight functions in a bounded domain. By exploiting the Nehari manifold and variational methods, some new existence and multiplicity results are obtain.


2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


Author(s):  
Shaya Shakerian

In this paper, we study the existence and multiplicity of solutions for the following fractional problem involving the Hardy potential and concave–convex nonlinearities: [Formula: see text] where [Formula: see text] is a smooth bounded domain in [Formula: see text] containing [Formula: see text] in its interior, and [Formula: see text] with [Formula: see text] which may change sign in [Formula: see text]. We use the variational methods and the Nehari manifold decomposition to prove that this problem has at least two positive solutions for [Formula: see text] sufficiently small. The variational approach requires that [Formula: see text] [Formula: see text] [Formula: see text], and [Formula: see text], the latter being the best fractional Hardy constant on [Formula: see text].


2021 ◽  
Vol 19 (1) ◽  
pp. 297-305
Author(s):  
Yuting Zhu ◽  
Chunfang Chen ◽  
Jianhua Chen ◽  
Chenggui Yuan

Abstract In this paper, we study the following generalized Kadomtsev-Petviashvili equation u t + u x x x + ( h ( u ) ) x = D x − 1 Δ y u , {u}_{t}+{u}_{xxx}+{\left(h\left(u))}_{x}={D}_{x}^{-1}{\Delta }_{y}u, where ( t , x , y ) ∈ R + × R × R N − 1 \left(t,x,y)\in {{\mathbb{R}}}^{+}\times {\mathbb{R}}\times {{\mathbb{R}}}^{N-1} , N ≥ 2 N\ge 2 , D x − 1 f ( x , y ) = ∫ − ∞ x f ( s , y ) d s {D}_{x}^{-1}f\left(x,y)={\int }_{-\infty }^{x}f\left(s,y){\rm{d}}s , f t = ∂ f ∂ t {f}_{t}=\frac{\partial f}{\partial t} , f x = ∂ f ∂ x {f}_{x}=\frac{\partial f}{\partial x} and Δ y = ∑ i = 1 N − 1 ∂ 2 ∂ y i 2 {\Delta }_{y}={\sum }_{i=1}^{N-1}\frac{{\partial }^{2}}{{\partial }_{{y}_{i}}^{2}} . We get the existence of infinitely many nontrivial solutions under certain assumptions in bounded domain without Ambrosetti-Rabinowitz condition. Moreover, by using the method developed by Jeanjean [13], we establish the existence of ground state solutions in R N {{\mathbb{R}}}^{N} .


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xavier Cabré ◽  
Pietro Miraglio ◽  
Manel Sanchón

AbstractWe consider the equation {-\Delta_{p}u=f(u)} in a smooth bounded domain of {\mathbb{R}^{n}}, where {\Delta_{p}} is the p-Laplace operator. Explicit examples of unbounded stable energy solutions are known if {n\geq p+\frac{4p}{p-1}}. Instead, when {n<p+\frac{4p}{p-1}}, stable solutions have been proved to be bounded only in the radial case or under strong assumptions on f. In this article we solve a long-standing open problem: we prove an interior {C^{\alpha}} bound for stable solutions which holds for every nonnegative {f\in C^{1}} whenever {p\geq 2} and the optimal condition {n<p+\frac{4p}{p-1}} holds. When {p\in(1,2)}, we obtain the same result under the nonsharp assumption {n<5p}. These interior estimates lead to the boundedness of stable and extremal solutions to the associated Dirichlet problem when the domain is strictly convex. Our work extends to the p-Laplacian some of the recent results of Figalli, Ros-Oton, Serra, and the first author for the classical Laplacian, which have established the regularity of stable solutions when {p=2} in the optimal range {n<10}.


Sign in / Sign up

Export Citation Format

Share Document