scholarly journals The European optical contribution to the James Webb Space Telescope

2018 ◽  
Vol 7 (6) ◽  
pp. 353-364
Author(s):  
Maurice te Plate ◽  
Brian O’Sullivan ◽  
Pierre Ferruit ◽  
David Lee ◽  
Martyn Wells ◽  
...  

Abstract The James Webb Space Telescope (JWST) is frequently referred to as the follow-on mission to the Hubble Space Telescope (HST). The ‘Webb’ will be the biggest space telescope ever built and is expected to enable astounding new science. The observatory comprises a 6.5-m-diameter telescope with a segmented primary mirror and four high-performance optical science instruments. The JWST has mostly been optimized to work in the near- (0.6–5.0 μm) and mid-infrared (5.0–29 μm) wavelength regions. The project is a strong international partnership led by the National Aeronautics and Space Administration (NASA) with contributions from the European Space Agency (ESA) and the Canadian Space Agency (CSA). The observatory is currently scheduled for launch in early 2021 from Kourou, French Guyana, by an ESA-provided Ariane 5 rocket. This paper will focus on the European optical contribution to the mission, which mainly consists of two highly advanced optical science instruments: The multi-object near-infrared spectrograph (NIRSpec) and the mid-infrared instrument (MIRI). The opto-mechanical design considerations and the realization of both instruments will be described, and we will conclude with a short JWST project status report and future outlook.

1990 ◽  
Vol 141 ◽  
pp. 339-346
Author(s):  
R.L. Duncombe ◽  
W. H. Jefferys ◽  
G. F. Benedict ◽  
P. D. Hemenway ◽  
P. J. Shelus

The Hubble Space Telescope, a large optical instrument having an aperture of 2.4 meters and a length of 8.8 meters has been developed by the U.S. National Aeronautics and Space Administration in cooperation with the European Space Agency. The Space Shuttle will be used to place the telescope in orbit. The primary astrometric instrument will be one of the three Fine Guidance Sensors which have the capability of measuring the position of one object with respect to another to an accuracy of ±0.″002. To facilitate use of the Hubble Space Telescope, observers will be provided with the Astrometric Data Reduction Software package. The variety of astrometric problems and the several modes of operation are mentioned as well as the cooperative program with the European astrometric satellite project HIPPARCOS.


2020 ◽  
Vol 494 (1) ◽  
pp. L81-L85 ◽  
Author(s):  
E Vanzella ◽  
M Meneghetti ◽  
G B Caminha ◽  
M Castellano ◽  
F Calura ◽  
...  

ABSTRACT We discovered a strongly lensed (μ ≳ 40) Ly α emission at z = 6.629 (S/N ≃ 18) in the MUSE Deep Lensed Field (MDLF) targeting the Hubble Frontier Field (HFF) galaxy cluster MACS J0416. Dedicated lensing simulations imply that the Ly α emitting region necessarily crosses the caustic. The arc-like shape of the Ly α extends 3 arcsec on the observed plane and is the result of two merged multiple images, each one with a de-lensed Ly α luminosity L ≲ 2.8 × 1040 erg s−1 arising from a confined region (≲150 pc effective radius). A spatially unresolved Hubble Space Telescope(HST) counterpart is barely detected at S/N ≃ 2 after stacking the near-infrared bands, corresponding to an observed (intrinsic) magnitude m1500 ≳ 30.8 (≳35.0). The inferred rest-frame Ly α equivalent width is EW0 > 1120 Å if the IGM transmission is TIGM < 0.5. The low luminosities and the extremely large Ly α EW0 match the case of a Population III (Pop III) star complex made of several dozens stars (∼104 M⊙) that irradiate an H ii region crossing the caustic. While the Ly α and stellar continuum are among the faintest ever observed at this redshift, the continuum and the Ly α emissions could be affected by differential magnification, possibly biasing the EW0 estimate. The aforementioned tentative HST detection tends to favour a large EW0, making such a faint Pop III candidate a key target for the James Webb Space Telescope and Extremely Large Telescopes.


2016 ◽  
Vol 05 (03) ◽  
pp. 1650008
Author(s):  
B. W. Holwerda ◽  
R. J. Bouwens ◽  
M. Trenti ◽  
M. A. Kenworthy

The James Webb Space Telescope (JWST) will be an exquisite new near-infrared observatory with imaging and multi-object spectroscopy through ESA’s NIRspec instrument with its unique Micro-Shutter Array (MSA), allowing for slits to be positioned on astronomical targets by opening specific [Formula: see text]-wide micro shutter doors. To ensure proper Target Acquisition (TA), the on-sky position of the MSA needs to be verified before spectroscopic observations start. An onboard centroiding program registers the position of pre-identified guide stars in a TA image, a short pre-spectroscopy exposure without dispersion (image mode) through the MSA with all shutters open. The outstanding issue is the availability of Galactic stars in the right luminosity range for TA relative to typical high redshift targets. We explore this here using the stars and [Formula: see text] candidate galaxies identified in the source extractor catalogs of Brightest of Reionizing Galaxies survey (BoRG[z8]), a pure-parallel program with Hubble Space Telescope Wide-Field Camera 3. We find that (a) a single WFC3 field contains enough Galactic stars to satisfy the NIRspec astrometry requirement (20 milli-arcseconds), provided its and the NIRspec TA’s are [Formula: see text] AB in WFC3 [Formula: see text], (b) a single WFC3 image can therefore serve as the pre-image if need be, (c) a WFC3 mosaic and accompanying TA image satisfy the astrometry requirement at [Formula: see text] AB mag in WFC3 [Formula: see text], (d) no specific Galactic latitude requires deeper TA imaging due to a lack of Galactic stars, and (e) a depth of [Formula: see text] AB mag in WFC3 [Formula: see text] is needed if a guide star in the same MSA quadrant as a target is required. We take the example of a BoRG identified [Formula: see text] candidate galaxy and require a Galactic star within 20[Formula: see text] of it. In this case, a depth of 25.5 AB in [Formula: see text] is required (with [Formula: see text]97% confidence).


2020 ◽  
Vol 500 (3) ◽  
pp. 3920-3925
Author(s):  
Wolfgang Brandner ◽  
Hans Zinnecker ◽  
Taisiya Kopytova

ABSTRACT Only a small number of exoplanets have been identified in stellar cluster environments. We initiated a high angular resolution direct imaging search using the Hubble Space Telescope (HST) and its Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) instrument for self-luminous giant planets in orbit around seven white dwarfs in the 625 Myr old nearby (≈45 pc) Hyades cluster. The observations were obtained with Near-Infrared Camera 1 (NIC1) in the F110W and F160W filters, and encompass two HST roll angles to facilitate angular differential imaging. The difference images were searched for companion candidates, and radially averaged contrast curves were computed. Though we achieve the lowest mass detection limits yet for angular separations ≥0.5 arcsec, no planetary mass companion to any of the seven white dwarfs, whose initial main-sequence masses were >2.8 M⊙, was found. Comparison with evolutionary models yields detection limits of ≈5–7 Jupiter masses (MJup) according to one model, and between 9 and ≈12 MJup according to another model, at physical separations corresponding to initial semimajor axis of ≥5–8 au (i.e. before the mass-loss events associated with the red and asymptotic giant branch phase of the host star). The study provides further evidence that initially dense cluster environments, which included O- and B-type stars, might not be highly conducive to the formation of massive circumstellar discs, and their transformation into giant planets (with m ≥ 6 MJup and a ≥6 au). This is in agreement with radial velocity surveys for exoplanets around G- and K-type giants, which did not find any planets around stars more massive than ≈3 M⊙.


2016 ◽  
Author(s):  
Sarah Kendrew ◽  
Silvia Scheithauer ◽  
Patrice Bouchet ◽  
Jerome Amiaux ◽  
Ruymán Azzollini ◽  
...  

2021 ◽  
Vol 162 (6) ◽  
pp. 271
Author(s):  
Guangwei Fu ◽  
Drake Deming ◽  
Erin May ◽  
Kevin Stevenson ◽  
David K. Sing ◽  
...  

Abstract Planets are like children with each one being unique and special. A better understanding of their collective properties requires a deeper understanding of each planet. Here we add the transit and eclipse spectra of hot-Jupiter WASP-74b into the ever growing data set of exoplanet atmosphere spectral library. With six transits and three eclipses using the Hubble Space Telescope and Spitzer Space Telescope (Spitzer), we present the most complete and precise atmospheric spectra of WASP-74b. We found no evidence for TiO/VO nor super-Rayleigh scattering reported in previous studies. The transit shows a muted water feature with strong Rayleigh scattering extending into the infrared. The eclipse shows a featureless blackbody-like WFC3/G141 spectrum and a weak methane absorption feature in the Spitzer 3.6 μm band. Future James Webb Space Telescope follow-up observations are needed to confirm these results.


Author(s):  
Muhammad Musaddique Ali Rafique

NASA/ESA/CSA joint venture James Webb Space Telescope is about to be launched. It is hypothesized to operate in near-infrared range. It is also hypothesized to unveil early star formation, galaxies, and universe due to its orbit, point in orbit and orbital motion. It has been under manufacturing for over 20 years at a staggering cost of 10 billion US dollars (most expensive scientific experiment in history). Beryllium (Be) is chosen to be element for construction of its main mirrors due to its high stiffness, low density, low linear coefficient of thermal expansion (α) in cryogenics and high thermal conductivity. It is followed by gold (Au) layer deposition on its (Be) surface to enhance its sensitivity towards infrared radiation as later is hypothesized to bear superior properties. However, serious mistakes have been made in selecting this material for this application. Owing to its crystal structure (hexagonal close packed (hcp)), slip planes (basal, prismatic and pyramidal) and mechanisms of their activation, Be necessitates easy fracture at cryogenic temperature. It has anisotropic properties and prone to transverse fracture under tensile loading. Furthermore, its ductile to brittle transition temperature is very low making it entirely unsuitable for such an application. It is one of most expensive metals on planet. This study constitutes revisiting these fundamental properties and mechanisms which were entirely ignored during materials selection thus rendering whole project useless.


2006 ◽  
Author(s):  
Bernard J. Rauscher ◽  
Torsten Böker ◽  
Craig Cabelli ◽  
Guido De Marchi ◽  
Pierre Ferruit ◽  
...  

Author(s):  
Geoff Cottrell

Each question that telescopes have helped answer has led to new questions: what is dark matter and dark energy? How did the first galaxies form? Are there habitable, Earth-like exoplanets? To address these questions, a new generation of telescopes are being built. ‘The next telescopes’ describes some of these, including the three extremely large infrared/optical telescopes, equipped with adaptive optics systems, due to start operating in the next decade. Other new telescopes discussed are the Square Kilometre Array, a radio telescope that will soon be the world’s largest scientific instrument, and the James Webb Space Telescope due to be launched in 2018, which is the 100 times more powerful successor to the Hubble Space Telescope.


Sign in / Sign up

Export Citation Format

Share Document