scholarly journals Identification of Drought in Western Slovakia by Palmer Drought Severity Index (PDSI)

2017 ◽  
Vol 14 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Veronika Zuzulová ◽  
Bernard Šiška

Abstract The paper deals with identification of drought in western Slovakia, which is based on soil-climatological data. For this purpose, three sites were chosen: Bratislava, Piešťany and Hurbanovo, situated on the Danubian Lowland. The Palmer Drought Severity Index (PDSI) was calculated on monthly basis for time series 1981–2010, 2021–2050 and 2071–2100. There were determined the driest periods by percentage of dry months for each site. The driest period in Bratislava and Hurbanovo was in the first evaluated time series. In Piešťany we can expect, that the second time series will be the driest. Linear trend of drying area will be revealed in period 2071–2100 for all three sites. The aim of the paper is to analyze and compare the occurrence of drought in temporal and spatial dimensions on the west part of Slovakia.

Climate ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 6 ◽  
Author(s):  
Nazzareno Diodato ◽  
Lelys Bravo De Guenni ◽  
Mariangel Garcia ◽  
Gianni Bellocchi

Severity of drought in California (U.S.) varies from year-to-year and is highly influenced by precipitation in winter months, causing billion-dollar events in single drought years. Improved understanding of the variability of drought on decadal and longer timescales is essential to support regional water resources planning and management. This paper presents a soft-computing approach to forecast the Palmer Drought Severity Index (PDSI) in California. A time-series of yearly data covering more than two centuries (1801–2014) was used for the design of ensemble projections to understand and quantify the uncertainty associated with interannual-to-interdecadal predictability. With a predictable structure elaborated by exponential smoothing, the projections indicate for the horizon 2015–2054 a weak increase of drought, followed by almost the same pace as in previous decades, presenting remarkable wavelike variations with durations of more than one year. Results were compared with a linear transfer function model approach where Pacific Decadal Oscillation and El Niño Southern Oscillation indices were both used as input time series. The forecasted pattern shows that variations attributed to such internal climate modes may not provide more reliable predictions than the one provided by purely internal variability of drought persistence cycles, as present in the PDSI time series.


2004 ◽  
Vol 5 (6) ◽  
pp. 1117-1130 ◽  
Author(s):  
Aiguo Dai ◽  
Kevin E. Trenberth ◽  
Taotao Qian

Abstract A monthly dataset of Palmer Drought Severity Index (PDSI) from 1870 to 2002 is derived using historical precipitation and temperature data for global land areas on a 2.5° grid. Over Illinois, Mongolia, and parts of China and the former Soviet Union, where soil moisture data are available, the PDSI is significantly correlated (r = 0.5 to 0.7) with observed soil moisture content within the top 1-m depth during warm-season months. The strongest correlation is in late summer and autumn, and the weakest correlation is in spring, when snowmelt plays an important role. Basin-averaged annual PDSI covary closely (r = 0.6 to 0.8) with streamflow for seven of world's largest rivers and several smaller rivers examined. The results suggest that the PDSI is a good proxy of both surface moisture conditions and streamflow. An empirical orthogonal function (EOF) analysis of the PDSI reveals a fairly linear trend resulting from trends in precipitation and surface temperature and an El Niño– Southern Oscillation (ENSO)-induced mode of mostly interannual variations as the two leading patterns. The global very dry areas, defined as PDSI < −3.0, have more than doubled since the 1970s, with a large jump in the early 1980s due to an ENSO-induced precipitation decrease and a subsequent expansion primarily due to surface warming, while global very wet areas (PDSI > +3.0) declined slightly during the 1980s. Together, the global land areas in either very dry or very wet conditions have increased from ∼20% to 38% since 1972, with surface warming as the primary cause after the mid-1980s. These results provide observational evidence for the increasing risk of droughts as anthropogenic global warming progresses and produces both increased temperatures and increased drying.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1269
Author(s):  
Milivoj B. Gavrilov ◽  
Milica G. Radaković ◽  
György Sipos ◽  
Gábor Mezősi ◽  
Gavrilo Gavrilov ◽  
...  

For the investigation of geographical, monthly, seasonal, and annual distributions of aridity and its annual trend in the region of the Central and Southern Pannonian Basin (CSPB), which includes the territories of Hungary and Vojvodina (Northern Serbia), the De Martonne Aridity Index (DMAI) was used. The DMAI was originally calculated from a total of 78 meteorological stations with the maximum available time series of climatological data in three cases: 1931–2017 for Hungary; 1949–2017 for Vojvodina; and 1949–2017 for Hungary and Vojvodina jointly. The Palmer Drought Severity Index (PDSI) was used to control the DMAI results. Temperature and precipitation trends were also investigated to understand their effects on the aridity trend. Three aridity types are distinguished on the annual level, five on the seasonal level, and four on the monthly level. The annual aridity had no trends in all three periods. It seems that aridity can be considered a more stable climate indicator of climate change than the temperature, at least in the CSPB.


2021 ◽  
Author(s):  
Sinta Berliana S. ◽  
Indah Susanti ◽  
Bambang Siswanto ◽  
Amalia Nurlatifah ◽  
Hidayatul Latifah ◽  
...  

2010 ◽  
Vol 19 (1) ◽  
pp. 14 ◽  
Author(s):  
Katarzyna Grala ◽  
William H. Cooke

Forests constitute a large percentage of the total land area in Mississippi and are a vital element of the state economy. Although wildfire occurrences have been considerably reduced since the 1920s, there are still ~4000 wildfires each year in Mississippi burning over 24 000 ha (60 000 acres). This study focusses on recent history and various characteristics of Mississippi wildfires to provide better understanding of spatial and temporal characteristics of wildfires in the state. Geographic information systems and Mississippi Forestry Commission wildfire occurrence data were used to examine relationships between climatic and anthropogenic factors, the incidence, burned area, wildfire cause, and socioeconomic factors. The analysis indicated that wildfires are more frequent in southern Mississippi, in counties covered mostly by pine forest, and are most prominent in the winter–spring season. Proximity to roads and cities were two anthropogenic factors that had the most statistically significant correlation with wildfire occurrence and size. In addition, the validity of the Palmer Drought Severity Index as a measure of fire activity was tested for climatic districts in Mississippi. Analysis indicated that drought influences fire numbers and size during summer and fall (autumn). The strongest relationship between the Palmer Drought Severity Index and burned area was found for the southern climatic districts for the summer–fall season.


2021 ◽  
Vol 12 (1) ◽  
pp. 16-29
Author(s):  
Ika Purnamasari ◽  
◽  
Tri Wahyu Saputra ◽  
Suci Ristiyana ◽  
◽  
...  

2015 ◽  
Vol 29 (13) ◽  
pp. 4833-4847 ◽  
Author(s):  
Yi Liu ◽  
Xiaoli Yang ◽  
Liliang Ren ◽  
Fei Yuan ◽  
Shanhu Jiang ◽  
...  

2000 ◽  
Vol 78 (7) ◽  
pp. 851-861 ◽  
Author(s):  
Marc D Abrams ◽  
Saskia van de Gevel ◽  
Ryan C Dodson ◽  
Carolyn A Copenheaver

Dendrochronological techniques were used to investigate the dynamics of an old-growth forest on the extreme slope (65%) at Ice Glen Natural Area in southwestern Massachusetts. The site represented a rare opportunity to study the disturbance history, successional development, and responses to climatic variation of an old-growth hemlock (Tsuga canadensis (L.) Carr) - white pine (Pinus strobus L.) - northern hardwood forest in the northeastern United States. Hemlock is the oldest species in the forest, with maximum tree ages of 305-321 years. The maximum ages for white pine and several hardwood species are 170-200 years. There was continuous recruitment of hemlock trees from 1677 to 1948. All of the existing white pine was recruited in the period between 1800 and 1880, forming an unevenly aged population within an unevenly aged, old-growth hemlock canopy. This was associated with large increases in the Master tree-ring chronologies, indicative of major stand-wide disturbances, for both hemlock and white pine. Nearly all of the hardwood species were also recruited between 1800 and 1880. After 1900, there was a dramatic decline in recruitment for all species, including hemlock, probably as a result of intensive deer browsing. White pine and hemlock tree-ring growth during the 20th century was positively correlated with the annual Palmer drought severity index (r = 0.61 and 0.39, respectively). This included reduced growth during periods of low Palmer drought severity index values, the drought years of 1895-1922, and dramatic increases during periods of high Palmer drought severity index values in the 1970s and 1990s. Significant positive and negative correlations of certain monthly Palmer drought severity index values with 20th century tree-ring chronologies also exist for white pine and hemlock using response function analysis. The results of this study suggest that old-growth forests on extreme sites in the eastern United States may be particularly sensitive to direct and indirect allogenic factors and climatic variations and represent an important resource for studying long-term ecological and climatic history.Key words: age structure, radial growth analysis, disturbance, climate, fire, tree rings.


Sign in / Sign up

Export Citation Format

Share Document