Radio Interferometric Research of Ionosphere by Signals of Space Satellites

2013 ◽  
Vol 22 (1) ◽  
pp. 25-33
Author(s):  
N. Dugin ◽  
A. Antipenko ◽  
V. Bezrukovs ◽  
V. Gavrilenko ◽  
A. Dementjev ◽  
...  

AbstractSince 2012, the Radiophysical Research Institute and the Lobachevsky State University at Nizhny Novgorod, Russia and the Ventspils International Radio Astronomy Centre at Irbene, Latvia are making radio interferometric experiments on study of ionosphere parameters in a quiet (natural) state of medium and research of artificial turbulence of the ionosphere, heated by the emission from the SURA facility. Remote diagnostics of the ionosphere is implemented using a method of radio sounding by signals of navigation satellites in combination with the Very Long Baseline Interferometry (VLBI) method. As a result of spectral and correlation analysis, interferometric responses of the two-element (RRI–UNN) and three-element (RRI–UNN–Irbene) interferometers were received by observations of 12 satellites of the navigation systems GLONASS and GPS. Here the first results are reported.

1986 ◽  
Vol 64 (4) ◽  
pp. 434-439 ◽  
Author(s):  
J. F. C. Wardle ◽  
D. H. Roberts

We present some first results of a program to map the distribution of linear polarization in compact radio sources with milliarcsecond resolution. We show first-epoch maps of 3C345 and 0735 + 178 and first- and second-epoch maps of OJ287. In general, the polarization is mainly associated with optically thin (jet) components. In the case of OJ287, polarization maps made 1 year apart are strikingly different. We also discuss some of the theoretical issues raised by these observations.


2017 ◽  
Vol 13 (S336) ◽  
pp. 201-206 ◽  
Author(s):  
Luca Moscadelli ◽  
Alberto Sanna ◽  
Ciriaco Goddi

AbstractImaging the inner few 1000 AU around massive forming stars, at typical distances of several kpc, requires angular resolutions of better than 0″.1. Very Long Baseline Interferometry (VLBI) observations of interstellar molecular masers probe scales as small as a few AU, whereas (new-generation) centimeter and millimeter interferometers allow us to map scales of the order of a few 100 AU. Combining these informations all together, it presently provides the most powerful technique to trace the complex gas motions in the proto-stellar environment. In this work, we review a few compelling examples of this technique and summarize our findings.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2662
Author(s):  
José A. López-Pérez ◽  
Félix Tercero-Martínez ◽  
José M. Serna-Puente ◽  
Beatriz Vaquero-Jiménez ◽  
María Patino-Esteban ◽  
...  

This paper shows a simultaneous tri-band (S: 2.2–2.7 GHz, X: 7.5–9 GHz and Ka: 28–33 GHz) low-noise cryogenic receiver for geodetic Very Long Baseline Interferometry (geo-VLBI) which has been developed at Yebes Observatory laboratories in Spain. A special feature is that the whole receiver front-end is fully coolable down to cryogenic temperatures to minimize receiver noise. It was installed in the first radio telescope of the Red Atlántica de Estaciones Geodinámicas y Espaciales (RAEGE) project, which is located in Yebes Observatory, in the frame of the VLBI Global Observing System (VGOS). After this, the receiver was borrowed by the Norwegian Mapping Autorithy (NMA) for the commissioning of two VGOS radiotelescopes in Svalbard (Norway). A second identical receiver was built for the Ishioka VGOS station of the Geospatial Information Authority (GSI) of Japan, and a third one for the second RAEGE VGOS station, located in Santa María (Açores Archipelago, Portugal). The average receiver noise temperatures are 21, 23, and 25 Kelvin and the measured antenna efficiencies are 70%, 75%, and 60% in S-band, X-band, and Ka-band, respectively.


2020 ◽  
Vol 493 (1) ◽  
pp. L81-L86 ◽  
Author(s):  
P Atri ◽  
J C A Miller-Jones ◽  
A Bahramian ◽  
R M Plotkin ◽  
A T Deller ◽  
...  

ABSTRACT Using the Very Long Baseline Array and the European Very Long Baseline Interferometry Network, we have made a precise measurement of the radio parallax of the black hole X-ray binary MAXI J1820+070, providing a model-independent distance to the source. Our parallax measurement of (0.348 ± 0.033) mas for MAXI J1820+070 translates to a distance of (2.96 ± 0.33) kpc. This distance implies that the source reached (15 ± 3) per cent of the Eddington luminosity at the peak of its outburst. Further, we use this distance to refine previous estimates of the jet inclination angle, jet velocity, and the mass of the black hole in MAXI J1820+070 to be (63 ± 3)°, (0.89 ± 0.09) c, and (9.2 ± 1.3) M⊙, respectively.


1999 ◽  
Vol 73 (7) ◽  
pp. 375-383 ◽  
Author(s):  
T. R. Emardson ◽  
G. Elgered ◽  
J. M. Johansson

2002 ◽  
Vol 12 ◽  
pp. 124-125 ◽  
Author(s):  
V. Dehant ◽  
M. Feissel ◽  
O. de Viron ◽  
M. Yseboodt ◽  
Ch. Bizouard

The recent theoretical developments have provided accurate series of nutations, which are close to the Very Long Baseline Interferometry (VLBI) data. At the milliarcsecond (mas) level, three series are available: MHB2000 (Mathews et al. 2000), FG2000 (Getino and Ferrándiz 2000), and SF2000 (Shirai and Fukushima 2000a,b) (see Dehant 2000, and in this volume, for more information and for a short description of these models).In the first part of our work we have compared these models with the (VLBI) observations (Ma et al. 2000) by computing rms of the residuals for several time intervals of measurements. We have concluded that these series have comparable precision.


Sign in / Sign up

Export Citation Format

Share Document