High-Resolution Spectroscopy of Cool Carbon-Rich and Metal-Poor Star HD 209621

2012 ◽  
Vol 21 (4) ◽  
Author(s):  
E. Matrozis ◽  
L. Začs ◽  
A. Barzdis

AbstractElement abundances for HD 209621 obtained earlier display significant discrepancies, especially in the case of CNO and neutron-capture elements. Therefore we performed a detailed analysis of chemical composition of this star using a new high-resolution spectrum. Atmospheric parameters and abundance pattern are updated, and the mechanism of nucleosynthesis is examined. Abundances for 11 elements are calculated for the first time. The method of atmospheric models and spectral synthesis was used. The following values of atmospheric parameters are derived: T

2019 ◽  
Vol 491 (4) ◽  
pp. 4829-4842 ◽  
Author(s):  
N P Ikonnikova ◽  
M Parthasarathy ◽  
A V Dodin ◽  
S Hubrig ◽  
G Sarkar

ABSTRACT The high-resolution ($R\sim 48\, 000$) optical spectrum of the B-type supergiant LS 5112, identified as the optical counterpart of the post-AGB candidate IRAS 18379–1707 is analysed. We report the detailed identifications of the observed absorption and emission features in the wavelength range 3700–9200 Å for the first time. The absorption line spectrum has been analysed using non-LTE model atmosphere techniques to determine stellar atmospheric parameters and chemical composition. We estimate Teff = 18 000 ± 1000 K, log g = 2.25 ± 0.08, ξt = 10 ± 4 km s−1, and vsin i = 37 ± 6 km s−1, and the derived abundances indicate a metal-deficient ([M/H] ≈ −0.6) post-AGB star. Chemical abundances of eight different elements were obtained. The estimates of the CNO abundances in IRAS 18379–1707 indicate that these elements are overabundant with [(C + N + O)/S] = + 0.5 ± 0.2 suggesting that the products of helium burning have been brought to the surface as a result of third dredge-up on the AGB. From the absorption lines, we derived heliocentric radial velocity of Vr = −124.0 ± 0.4 km s−1. We have identified permitted emission lines of O i, N i, Na i, S ii, Si ii, C ii, Mg ii, and Fe iii. The nebula forbidden lines of [N i], [O i], [Fe ii], [N ii], [S ii], [Ni ii], and [Cr ii] have also been identified. The Balmer lines H α, H β, and H γ show P-Cygni behaviour clearly indicating post-AGB mass-loss process in the object with the wind velocity up to 170 km s−1.


2017 ◽  
Vol 95 (9) ◽  
pp. 862-868 ◽  
Author(s):  
Orlando J. Katime Santrich ◽  
Silvia Rossi

Open clusters are important astrophysical laboratories to study the stellar formation and evolution and to verify the disk structure of the Milky Way. We present calculations of stellar atmospheric parameters and s-process abundances for nine giant stars in the galactic open clusters IC 4651 and IC 4725. These objects have their memberships confirmed from dynamic studies and chemical analysis. The high-resolution spectra are available in the FEROS ESO archive. We have applied a line by line analysis relative to Juno solar spectrum to determine the stellar atmospheric parameters and chemical abundances of Y II, Zr I, La II, Ce II, and Nd II under the local thermal equilibrium hypothesis. The obtained results were compared to the literature values. The derived s-process abundance pattern agrees with the most recent behaviors reported for giant stars in galactic open clusters.


2019 ◽  
Vol 628 ◽  
pp. A49 ◽  
Author(s):  
Š. Mikolaitis ◽  
A. Drazdauskas ◽  
R. Minkevičiūtė ◽  
E. Stonkutė ◽  
G. Tautvaišienė ◽  
...  

Context. New space missions, such as NASA TESS or ESA PLATO, will focus on bright stars, which have been largely ignored by modern large surveys, especially in the northern sky. Spectroscopic information is of paramount importance in characterising the stars and analysing planets possibly orbiting them, and in studying the Galactic disc evolution. Aims. The aim of this work was to analyse all bright (V <  8 mag) F, G, and K dwarf stars using high-resolution spectra in the selected sky fields near the northern celestial pole. Methods. The observations were carried out with the 1.65 m diameter telescope at the Molėtai Astronomical Observatory and a fibre-fed high-resolution spectrograph covering a full visible wavelength range (4000–8500 Å). The atmospheric parameters were derived using the classical equivalent width approach while the individual chemical element abundances were determined from spectral synthesis. For both tasks the one-dimensional plane-parallel LTE MARCS stellar model atmospheres were applied. The NLTE effects for the majority of elemental abundances in our sample were negligible; however, we did calculate the NLTE corrections for the potassium abundances, as they were determined from the large 7698.9 Å line. For manganese and copper we have accounted for a hyperfine splitting. Results. We determined the main atmospheric parameters, kinematic properties, orbital parameters, and stellar ages for 109 newly observed stars and chemical abundances of Na I, Mg I, Al I, Si I, Si II, S I, K I, Ca I, Ca II, Sc I, Sc II, Ti I, Ti II, V I, Cr I, Cr II, Mn I, Fe I, Fe II, Co I, Ni I, Cu I, and Zn I for 249 F, G, and K dwarf stars observed in the present study and in our previous study. The [Mg I/Fe I] ratio was adopted to define the thin-disc (α-poor) and thick-disc (α-rich) stars in our sample. We explored the behaviour of 21 chemical species in the [El/Fe I] versus [Fe I/H] and [El/Fe I] versus age planes, and compared the results with the latest Galactic chemical evolution models. We also explored [El/Fe I] gradients according to the mean Galactocentric distances and maximum height above the Galactic plane. Conclusions. We found that in the Galactic thin-disc [El/Fe I] ratios of α-elements and aluminium have a positive trend with respect to age while the trend of Mn is clearly negative. Abundances of other species do not display significant trends. While the current theoretical models are able to reproduce the generic trends of the elements, they often seem to overestimate or underestimate the observational abundances. We found that the α-element and zinc abundances have slightly positive or flat radial and vertical gradients, while gradients for the odd-Z element Na, K, V, and Mn abundances are negative.


2019 ◽  
Vol 627 ◽  
pp. A173 ◽  
Author(s):  
M. Valentini ◽  
C. Chiappini ◽  
D. Bossini ◽  
A. Miglio ◽  
G. R. Davies ◽  
...  

Context. Very metal-poor halo stars are the best candidates for being among the oldest objects in our Galaxy. Samples of halo stars with age determination and detailed chemical composition measurements provide key information for constraining the nature of the first stellar generations and the nucleosynthesis in the metal-poor regime. Aims. Age estimates are very uncertain and are available for only a small number of metal-poor stars. We present the first results of a pilot programme aimed at deriving precise masses, ages, and chemical abundances for metal-poor halo giants using asteroseismology and high-resolution spectroscopy. Methods. We obtained high-resolution UVES spectra for four metal-poor RAVE stars observed by the K2 satellite. Seismic data obtained from K2 light curves helped improve spectroscopic temperatures, metallicities, and individual chemical abundances. Mass and ages were derived using the code PARAM, investigating the effects of different assumptions (e.g. mass loss and [α/Fe]-enhancement). Orbits were computed using Gaia DR2 data. Results. The stars are found to be normal metal-poor halo stars (i.e. non C-enhanced), and an abundance pattern typical of old stars (i.e. α and Eu-enhanced), and have masses in the 0.80−1.0 M⊙ range. The inferred model-dependent stellar ages are found to range from 7.4 Gyr to 13.0 Gyr with uncertainties of ∼30%−35%. We also provide revised masses and ages for metal-poor stars with Kepler seismic data from the APOGEE survey and a set of M4 stars. Conclusions. The present work shows that the combination of asteroseismology and high-resolution spectroscopy provides precise ages in the metal-poor regime. Most of the stars analysed in the present work (covering the metallicity range of [Fe/H] ∼ −0.8 to −2 dex) are very old >9 Gyr (14 out of 19 stars), and all of the stars are older than >5 Gyr (within the 68 percentile confidence level).


2012 ◽  
Vol 21 (4) ◽  
Author(s):  
Tõnu Kipper

AbstractA high resolution spectrum of a pre-main sequence star HD 377 is analyzed. The atmospheric parameters are found to be: T


2018 ◽  
Vol 14 (S345) ◽  
pp. 248-249
Author(s):  
Š. Mikolaitis ◽  
G. Tautvaišienė ◽  
A. Drazdauskas ◽  
R. Minkevičiūtė ◽  
L. Klebonas ◽  
...  

AbstractHigh-resolution spectra for all bright ( mag) and cooler than F5 spectral class dwarf stars were observed in two fields with radii of 20 degrees (centered at (2000) = 161.03º and (2000) = 86.60º and at (2000) = 265.08º and (2000) = 39.58º) towards the northern ecliptic pole. They coincide with two of the preliminary ESA PLATO fields which also will be targeted by the NASA TESS mission. We use high-resolution spectra obtained with the VUES spectrograph mounted on the 1.65 m telescope at the Moletai Astronomical Observatory of the Institute of Theoretical Physics and Astronomy, Vilnius University. In total we observed 405 stars. Spectroscopic atmospheric parameters and abundances of 23 neutral and ionised atomic species were determined for 261 slowly rotating stars (up to 15 kms-1). 73% of stars were analysed spectroscopically for the first time. We also derived stellar ages and orbital parameters to draw a chemical picture of the Solar vicinity.


2012 ◽  
Vol 21 (3) ◽  
Author(s):  
Tõnu Kipper ◽  
Valentina G. Klochkova

AbstractThe high resolution spectra of hydrogen-deficient binary υ Sgr are analyzed. The atmospheric parameters are T


2009 ◽  
Vol 5 (S265) ◽  
pp. 360-361
Author(s):  
Letícia D. Ferreira ◽  
Gustavo F. Porto de Mello ◽  
Licio da Silva

AbstractWe report the spectroscopic analysis of six kinematical members of the Zeta Reticuli Moving Group, one of them for the first time. We confirm the existence of the Group by establishing a common abundance pattern for four kinematical members. High resolution spectra yielded abundances of Si, Ca, Fe, Ni and Ba, and others. Effective temperatures were derived from the excitation & ionization equilibria of Fe lines of four stars. For these, and the remaining two members, temperatures were derived from colors and the fitting of theoretical spectra to the Hα line, and ages and masses were estimated from theoretical HR diagrams. We suggest that the Group is physical being metal-poor and ~6 Gyr old.


2020 ◽  
Vol 494 (1) ◽  
pp. 1470-1489
Author(s):  
Cintia F Martinez ◽  
N Holanda ◽  
C B Pereira ◽  
N A Drake

ABSTRACT We present a detailed high-resolution spectroscopic analysis of 12 red giant stars, in single and binaries or multiples systems, classified as members of the intermediate-age (631 Myr) open cluster NGC 2539. We used FEROS echelle spectra and the standard LTE analysis to derive the atmospheric parameters for the stars and the abundance ratios of light elements (Li, C, N), light odd-Z elements (Na, Al), α-elements (Mg, Si, Ca, Ti), Fe-group elements (Cr, Fe, Ni), and n-capture elements (Y, Zr, Ce, Nd, Eu). Our results show that the sample star of NGC 2539 has low projected rotational velocities and an almost solar metallicity, with a mean of [Fe/H] = −0.03 ± 0.07 dex. The abundance pattern displays for the analyzed stars are, in general, similar to those presented by solar neighborhood stars, including giant members of others open clusters. In particular, light elements and Na abundance pattern shows anomalies resulting from the appearance of enriched material on the stellar surface, produced by mechanisms like the first dredge-up and/or thermohaline and rotation-induced mixing. We also identified two of the spectroscopic binaries of our sample as ‘yellow stragglers’ and we determined the nature of their companions.


2018 ◽  
Vol 620 ◽  
pp. A180 ◽  
Author(s):  
A. S. Rajpurohit ◽  
F. Allard ◽  
S. Rajpurohit ◽  
R. Sharma ◽  
G. D. C. Teixeira ◽  
...  

Context. Being the most numerous and oldest stars in the galaxy, M dwarfs are objects of great interest for exoplanet searches. The presence of molecules in their atmosphere complicates our understanding of their atmospheric properties. But great advances have recently been made in the modeling of M dwarfs due to the revision of solar abundances. Aims. We aim to determine stellar parameters of M dwarfs using high resolution spectra (R ∼ 90 000) simultaneously in the visible and the near-infrared. The high resolution spectra and broad wavelength coverage provide an unique opportunity to understand the onset of dust and cloud formation at cool temperatures. Furthermore, this study will help in understanding the physical processes which occur in a cool atmospheres, particularly, the redistribution of energy from the optical to the near-infrared. Methods. The stellar parameters of M dwarfs in our sample have been determined by comparing the high resolution spectra both in the optical and in the near-infrared simultaneously observed by CARMENES with the synthetic spectra obtained from the BT-Settl model atmosphere. The detailed spectral synthesis of these observed spectra both in the optical and in the near-infrared helps to understand the missing continuum opacity. Results. For the first time, we derive fundamental stellar parameters of M dwarfs using the high resolution optical and near-infrared spectra simultaneously. We determine Teff, log g and [M/H] for 292 M dwarfs of spectral type M0 to M9, where the formation of dust and clouds are important. The derived Teff for the sample ranges from 2300 to 4000 K, values of log g ranges from 4.5 ≤ logg ≤ 5.5 and the resulting metallicity ranges from −0.5 ≤ [M/H] ≤ +0.5. We have also explored the possible differences in Teff, log g and [M/H] by comparing them with other studies of the same sample of M dwarfs.


Sign in / Sign up

Export Citation Format

Share Document