scholarly journals Topological Transversality Principles and General Coincidence Theory

2017 ◽  
Vol 25 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Donal O’Regan

AbstractThis paper presents general topological coincidence principles for multivalued maps defined on subsets of completely regular topological spaces.

1977 ◽  
Vol 23 (1) ◽  
pp. 46-58 ◽  
Author(s):  
A. R. Bednarek ◽  
Eugene M. Norris

SynopsisIn this paper we define two semigroups of continuous relations on topological spaces and determine a large class of spaces for which Banach-Stone type theorems hold, i.e. spaces for which isomorphism of the semigroups implies homeomorphism of the spaces. This class includes all 0-dimensional Hausdorff spaces and all those completely regular Hausdorff spaces which contain an arc; indeed all of K. D. Magill's S*-spaces are included. Some of the algebraic structure of the semigroup of all continuous relations is elucidated and a method for producing examples of topological semigroups of relations is discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dipankar Dey ◽  
Dhananjay Mandal ◽  
Manabendra Nath Mukherjee

PurposeThe present article deals with the initiation and study of a uniformity like notion, captioned μ-uniformity, in the context of a generalized topological space.Design/methodology/approachThe existence of uniformity for a completely regular topological space is well-known, and the interrelation of this structure with a proximity is also well-studied. Using this idea, a structure on generalized topological space has been developed, to establish the same type of compatibility in the corresponding frameworks.FindingsIt is proved, among other things, that a μ-uniformity on a non-empty set X always induces a generalized topology on X, which is μ-completely regular too. In the last theorem of the paper, the authors develop a relation between μ-proximity and μ-uniformity by showing that every μ-uniformity generates a μ-proximity, both giving the same generalized topology on the underlying set.Originality/valueIt is an original work influenced by the previous works that have been done on generalized topological spaces. A kind of generalization has been done in this article, that has produced an intermediate structure to the already known generalized topological spaces.


1972 ◽  
Vol 13 (4) ◽  
pp. 492-500 ◽  
Author(s):  
Robert L. Blefko

Mrowka and Engleking [1] have recently introduced a notion more general than that of compactness. Perhaps the most convenient direction at departure is the following: for spaces X and E, X is said to be E-compact if X is topologically embeddable as a closed subset of a product Em for some cardinal m, in which case we write X ⊂cl Em. More generally, X is said to be E-completely regular if X is topologically embeddable in a product Em for some m. For example, if we take E to be the unit interval I, we obtain the class of compact spaces and completely regular spaces, respectively, as is well-known. The question then arises, of course, given a space E, what spaces are compact with respect to it? A related question, to which we address ourselves in this note, is the following. Denote by K[E] all those topological spaces which are E-compact. Then we ask: are there very many distinct E-compact classes? It will develop that there are indeed quite a large number of such classes.


2003 ◽  
Vol 2003 (61) ◽  
pp. 3841-3871 ◽  
Author(s):  
Francesco Altomare ◽  
Sabrina Diomede

We discuss the approximation properties of nets of positive linear operators acting on function spaces defined on Hausdorff completely regular spaces. A particular attention is devoted to positive operators which are defined in terms of integrals with respect to a given family of Borel measures. We present several applications which, in particular, show the advantages of such a general approach. Among other things, some new Korovkin-type theorems on function spaces on arbitrary topological spaces are obtained. Finally, a natural extension of the so-called Bernstein-Schnabl operators for convex (not necessarily compact) subsets of a locally convex space is presented as well.


2008 ◽  
Vol 58 (3) ◽  
Author(s):  
Surjit Khurana

AbstractX1 and X 2 are completely regular Hausdorff spaces, E 1, E 2 and F are Dedekind complete Banach lattices, 〈·,·〉: E 1 × E 2 → F is a bilinear mapping, and μ 1 and μ 2 are, respectively, E 1 and E 2 valued positive, countably additive Baire or Borel measures (countable additivity relative to order convergence) on X 1 and X 2. Under certain conditions the existence and uniqueness of the F-valued, positive, product measure is proved.


2021 ◽  
Vol 9 (1) ◽  
pp. 250-263
Author(s):  
V. Mykhaylyuk ◽  
O. Karlova

In 1932 Sierpi\'nski proved that every real-valued separately continuous function defined on the plane $\mathbb R^2$ is determined uniquely on any everywhere dense subset of $\mathbb R^2$. Namely, if two separately continuous functions coincide of an everywhere dense subset of $\mathbb R^2$, then they are equal at each point of the plane. Piotrowski and Wingler showed that above-mentioned results can be transferred to maps with values in completely regular spaces. They proved that if every separately continuous function $f:X\times Y\to \mathbb R$ is feebly continuous, then for every completely regular space $Z$ every separately continuous map defined on $X\times Y$ with values in $Z$ is determined uniquely on everywhere dense subset of $X\times Y$. Henriksen and Woods proved that for an infinite cardinal $\aleph$, an $\aleph^+$-Baire space $X$ and a topological space $Y$ with countable $\pi$-character every separately continuous function $f:X\times Y\to \mathbb R$ is also determined uniquely on everywhere dense subset of $X\times Y$. Later, Mykhaylyuk proved the same result for a Baire space $X$, a topological space $Y$ with countable $\pi$-character and Urysohn space $Z$. Moreover, it is natural to consider weaker conditions than separate continuity. The results in this direction were obtained by Volodymyr Maslyuchenko and Filipchuk. They proved that if $X$ is a Baire space, $Y$ is a topological space with countable $\pi$-character, $Z$ is Urysohn space, $A\subseteq X\times Y$ is everywhere dense set, $f:X\times Y\to Z$ and $g:X\times Y\to Z$ are weakly horizontally quasi-continuous, continuous with respect to the second variable, equi-feebly continuous wuth respect to the first one and such that $f|_A=g|_A$, then $f=g$. In this paper we generalize all of the results mentioned above. Moreover, we analize classes of topological spaces wich are favorable for Sierpi\'nsi-type theorems.


1972 ◽  
Vol 24 (3) ◽  
pp. 379-389 ◽  
Author(s):  
Anthony W. Hager

All topological spaces shall be uniformizable (completely regular Hausdorff). A uniformity on X shall be viewed as a collection μ of coverings of X, via the manner of Tukey [20] and Isbell [16], and the associated uniform space denoted μX. Given the uniformizable topological space X, we shall be concerned with compatible uniformities as follows (discussed more carefully in § 1). The fine uniformity α (finest compatible with the topology); the “cardinal reflections“ αm of α (m an infinite cardinal number) ; αc, the weak uniformity generated by the real-valued continuous functions.With μ standing, generically, for one of these uniformities, we consider the question: when is μ(X × Y) = μX × μY For μ = αℵ0 (the finest compatible precompact uniformity), the problem is equivalent to that of whenβ(X × Y) = βX × βY,β denoting Stone-Cech compactification; this is answered by the theorem of Glicksberg [9]. For μ = α, we have Isbell's generalization [16, VI1.32].


2010 ◽  
Vol 75 (4) ◽  
pp. 1137-1146 ◽  
Author(s):  
Giovanni Curi

Introduction. In 1937 E. Čech and M.H. Stone, independently, introduced the maximal compactification of a completely regular topological space, thereafter called Stone-Čech compactification [8, 23]. In the introduction of [8] the non-constructive character of this result is so described: “It must be emphasized that β(S) [the Stone-Čech compactification of S] may be defined only formally (not constructively) since it exists only in virtue of Zermelo's theorem”.By replacing topological spaces with locales, Banaschewski and Mulvey [4, 5, 6], and Johnstone [14] obtained choice-free intuitionistic proofs of Stone-Čech compactification. Although valid in any topos, these localic constructions rely—essentially, as is to be demonstrated—on highly impredicative principles, and thus cannot be considered as constructive in the sense of the main systems for constructive mathematics, such as Martin-Löf's constructive type theory and Aczel's constructive set theory.In [10] I characterized the locales of which the Stone-Čech compactification can be defined in constructive type theory CTT, and in the formal system CZF+uREA+DC, a natural extension of Aczel's system for constructive set theory CZF by a strengthening of the Regular Extension Axiom REA and the principle of Dependent Choice.


2003 ◽  
Vol 16 (2) ◽  
pp. 163-170 ◽  
Author(s):  
M. Kanakaraj ◽  
K. Balachandran

The existence of mild solutions of Sobolev-type semilinear mixed integrodifferential inclusions in Banach spaces is proved using a fixed point theorem for multivalued maps on locally convex topological spaces.


2005 ◽  
Vol 2005 (23) ◽  
pp. 3781-3797 ◽  
Author(s):  
A. K. Katsaras

Some of the properties of the completely regular fuzzifying topological spaces are investigated. It is shown that a fuzzifying topologyτis completely regular if and only if it is induced by some fuzzy uniformity or equivalently by some fuzzifying proximity. Also,τis completely regular if and only if it is generated by a family of probabilistic pseudometrics.


Sign in / Sign up

Export Citation Format

Share Document