Artificial intelligence with neural networks in optical measurement and inspection systems

2020 ◽  
Vol 68 (6) ◽  
pp. 477-487
Author(s):  
Michael Heizmann ◽  
Alexander Braun ◽  
Markus Hüttel ◽  
Christina Klüver ◽  
Erik Marquardt ◽  
...  

AbstractOptical measuring and inspection systems play an important role in automation as they allow a comprehensive and non-contact quality assessment of products and processes. In this field, too, systems are increasingly being used that apply artificial intelligence and machine learning, mostly by means of artificial neural networks. Results achieved with this approach are often very promising and require less development effort. However, the supplementation and replacement of classical image processing methods by machine learning methods is not unproblematic, especially in applications with high safety or quality requirements, since the latter have characteristics that differ considerably from classical image processing methods. In this paper, essential aspects and trends of machine learning and artificial intelligence for the application in optical measurement and inspection systems are presented and discussed.

Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 823
Author(s):  
Ting Peng ◽  
Xiefei Zhi ◽  
Yan Ji ◽  
Luying Ji ◽  
Ye Tian

The extended range temperature prediction is of great importance for public health, energy and agriculture. The two machine learning methods, namely, the neural networks and natural gradient boosting (NGBoost), are applied to improve the prediction skills of the 2-m maximum air temperature with lead times of 1–35 days over East Asia based on the Environmental Modeling Center, Global Ensemble Forecast System (EMC-GEFS), under the Subseasonal Experiment (SubX) of the National Centers for Environmental Prediction (NCEP). The ensemble model output statistics (EMOS) method is conducted as the benchmark for comparison. The results show that all the post-processing methods can efficiently reduce the prediction biases and uncertainties, especially in the lead week 1–2. The two machine learning methods outperform EMOS by approximately 0.2 in terms of the continuous ranked probability score (CRPS) overall. The neural networks and NGBoost behave as the best models in more than 90% of the study area over the validation period. In our study, CRPS, which is not a common loss function in machine learning, is introduced to make probabilistic forecasting possible for traditional neural networks. Moreover, we extend the NGBoost model to atmospheric sciences of probabilistic temperature forecasting which obtains satisfying performances.


2021 ◽  
Vol 295 (2) ◽  
pp. 97-100
Author(s):  
K. Seniva ◽  

This article discusses the main ways of using neural networks and machine learning methods of various types in computer games. Machine learning and neural networks are hot topics in many technology fields. One of them is the creation of computer games, where new tools are used to make games more interesting. Remastered and modified games with neural networks have become a new trend. One of the most popular ways to implement artificial intelligence is neural networks. They are used in everything from medicine to the entertainment industry. But one of the most promising areas for their development is games. The game world is an ideal platform for testing artificial intelligence without the danger of harming nature or people. Making bots more complex is just a small part of what neural networks can do. They are also actively used in game development, and in some areas they already make people feel uncomfortable. Research is ongoing on color and light correction, real-time character animation and behavior control. The main types of neural networks that can learn such functions are considered. Neural networks learn (and self-learn) very quickly. The more primitive the task, the faster the person will become unnecessary. This is already noticeable in the gaming industry, but will soon spread to other areas of life, because games are just a convenient platform for experimenting with artificial intelligence before its implementation in real life. The main problem faced by scientists is that it is difficult for neural networks to copy the mechanics of the game. There are some achievements in this direction, but research continues. Therefore, in the future, real specialists will be required for the development of games for a long time, although AI is already coping with some tasks.


2019 ◽  
Vol 25 (2) ◽  
pp. 145-167 ◽  
Author(s):  
Nicholas Guttenberg ◽  
Nathaniel Virgo ◽  
Alexandra Penn

Natural evolution gives the impression of leading to an open-ended process of increasing diversity and complexity. If our goal is to produce such open-endedness artificially, this suggests an approach driven by evolutionary metaphor. On the other hand, techniques from machine learning and artificial intelligence are often considered too narrow to provide the sort of exploratory dynamics associated with evolution. In this article, we hope to bridge that gap by reviewing common barriers to open-endedness in the evolution-inspired approach and how they are dealt with in the evolutionary case—collapse of diversity, saturation of complexity, and failure to form new kinds of individuality. We then show how these problems map onto similar ones in the machine learning approach, and discuss how the same insights and solutions that alleviated those barriers in evolutionary approaches can be ported over. At the same time, the form these issues take in the machine learning formulation suggests new ways to analyze and resolve barriers to open-endedness. Ultimately, we hope to inspire researchers to be able to interchangeably use evolutionary and gradient-descent-based machine learning methods to approach the design and creation of open-ended systems.


Fibers ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 73 ◽  
Author(s):  
Mei-Ling Huang ◽  
Chien-Chang Fu

Textile pilling causes an undesirable appearance on the surface of garments, which is a long-standing problem. In this study, textile grading of fleece based on pilling assessment was performed using image processing and machine learning methods. Two image processing methods were used. The first method involved using the discrete Fourier transform combined with Gaussian filtering, and the second method involved using the Daubechies wavelet. Furthermore, binarization was used to segment the textile pilling from the background. Morphological and topological image processing methods were applied to extract the essential characteristics of textile image information to establish a database for the textile. Finally, machine learning methods, namely the artificial neural network (ANN) and the support vector machine (SVM), were used to objectively solve the textile grading problem. When the Fourier-Gaussian method was used, the classification accuracies of the ANN and SVM were 96.6% and 95.3%, and the overall accuracies of the Daubechies wavelet were 96.3% and 90.9%, respectively.


2014 ◽  
Vol 10 (S306) ◽  
pp. 279-287 ◽  
Author(s):  
Michael Hobson ◽  
Philip Graff ◽  
Farhan Feroz ◽  
Anthony Lasenby

AbstractMachine-learning methods may be used to perform many tasks required in the analysis of astronomical data, including: data description and interpretation, pattern recognition, prediction, classification, compression, inference and many more. An intuitive and well-established approach to machine learning is the use of artificial neural networks (NNs), which consist of a group of interconnected nodes, each of which processes information that it receives and then passes this product on to other nodes via weighted connections. In particular, I discuss the first public release of the generic neural network training algorithm, calledSkyNet, and demonstrate its application to astronomical problems focusing on its use in the BAMBI package for accelerated Bayesian inference in cosmology, and the identification of gamma-ray bursters. TheSkyNetand BAMBI packages, which are fully parallelised using MPI, are available athttp://www.mrao.cam.ac.uk/software/.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 614 ◽  
Author(s):  
M Manoj krishna ◽  
M Neelima ◽  
M Harshali ◽  
M Venu Gopala Rao

The image classification is a classical problem of image processing, computer vision and machine learning fields. In this paper we study the image classification using deep learning. We use AlexNet architecture with convolutional neural networks for this purpose. Four test images are selected from the ImageNet database for the classification purpose. We cropped the images for various portion areas and conducted experiments. The results show the effectiveness of deep learning based image classification using AlexNet.  


2017 ◽  
Author(s):  
◽  
Zeshan Peng

With the advancement of machine learning methods, audio sentiment analysis has become an active research area in recent years. For example, business organizations are interested in persuasion tactics from vocal cues and acoustic measures in speech. A typical approach is to find a set of acoustic features from audio data that can indicate or predict a customer's attitude, opinion, or emotion state. For audio signals, acoustic features have been widely used in many machine learning applications, such as music classification, language recognition, emotion recognition, and so on. For emotion recognition, previous work shows that pitch and speech rate features are important features. This thesis work focuses on determining sentiment from call center audio records, each containing a conversation between a sales representative and a customer. The sentiment of an audio record is considered positive if the conversation ended with an appointment being made, and is negative otherwise. In this project, a data processing and machine learning pipeline for this problem has been developed. It consists of three major steps: 1) an audio record is split into segments by speaker turns; 2) acoustic features are extracted from each segment; and 3) classification models are trained on the acoustic features to predict sentiment. Different set of features have been used and different machine learning methods, including classical machine learning algorithms and deep neural networks, have been implemented in the pipeline. In our deep neural network method, the feature vectors of audio segments are stacked in temporal order into a feature matrix, which is fed into deep convolution neural networks as input. Experimental results based on real data shows that acoustic features, such as Mel frequency cepstral coefficients, timbre and Chroma features, are good indicators for sentiment. Temporal information in an audio record can be captured by deep convolutional neural networks for improved prediction accuracy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lara Lloret Iglesias ◽  
Pablo Sanz Bellón ◽  
Amaia Pérez del Barrio ◽  
Pablo Menéndez Fernández-Miranda ◽  
David Rodríguez González ◽  
...  

AbstractDeep learning is nowadays at the forefront of artificial intelligence. More precisely, the use of convolutional neural networks has drastically improved the learning capabilities of computer vision applications, being able to directly consider raw data without any prior feature extraction. Advanced methods in the machine learning field, such as adaptive momentum algorithms or dropout regularization, have dramatically improved the convolutional neural networks predicting ability, outperforming that of conventional fully connected neural networks. This work summarizes, in an intended didactic way, the main aspects of these cutting-edge techniques from a medical imaging perspective.


2021 ◽  
Vol 2068 (1) ◽  
pp. 012042
Author(s):  
A Kolesnikov ◽  
P Kikin ◽  
E Panidi

Abstract The field of logistics and transport operates with large amounts of data. The transformation of such arrays into knowledge and processing using machine learning methods will help to find additional reserves for optimizing transport and logistics processes and supply chains. This article analyses the possibilities and prospects for the application of machine learning and geospatial knowledge in the field of logistics and transport using specific examples. The long-term impact of geospatial-based artificial intelligence systems on such processes as procurement, delivery, inventory management, maintenance, customer interaction is considered.


Sign in / Sign up

Export Citation Format

Share Document