Regulation of GTPases in the Bacterial Translation Machinery

2000 ◽  
Vol 381 (5-6) ◽  
Author(s):  
M. Sprinzl ◽  
S. Brock ◽  
Y. Huang ◽  
P. Milovnik ◽  
M. Nanninga ◽  
...  
Cell Reports ◽  
2016 ◽  
Vol 17 (3) ◽  
pp. 904-916 ◽  
Author(s):  
Alla Gagarinova ◽  
Geordie Stewart ◽  
Bahram Samanfar ◽  
Sadhna Phanse ◽  
Carl A. White ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Soma Jana ◽  
Partha P. Datta

Abstract Background Protein synthesis is a cellular process that takes place through the successive translation events within the ribosome by the event-specific protein factors, namely, initiation, elongation, release, and recycling factors. In this regard, we asked the question about how similar are those translation factors to each other from a wide variety of bacteria? Hence, we did a thorough in silico study of the translation factors from 495 bacterial sp., and 4262 amino acid sequences by theoretically measuring their pI and MW values that are two determining factors for distinguishing individual proteins in 2D gel electrophoresis in experimental procedures. Then we analyzed the output from various angles. Results Our study revealed the fact that it’s not all same, or all random, but there are distinct orders and the pI values of translation factors are translation event specific. We found that the translation initiation factors are mainly basic, whereas, elongation and release factors that interact with the inter-subunit space of the intact 70S ribosome during translation are strictly acidic across bacterial sp. These acidic elongation factors and release factors contain higher frequencies of glutamic acids. However, among all the translation factors, the translation initiation factor 2 (IF2) and ribosome recycling factor (RRF) showed variable pI values that are linked to the order of phylogeny. Conclusions From the results of our study, we conclude that among all the bacterial translation factors, elongation and release factors are more conserved in terms of their pI values in comparison to initiation and recycling factors. Acidic properties of these factors are independent of habitat, nature, and phylogeny of the bacterial species. Furthermore, irrespective of the different shapes, sizes, and functions of the elongation and release factors, possession of the strictly acidic pI values of these translation factors all over the domain Bacteria indicates that the acidic nature of these factors is a necessary criterion, perhaps to interact into the partially enclosed rRNA rich inter-subunit space of the translating 70S ribosome.


1998 ◽  
Vol 42 (12) ◽  
pp. 3251-3255 ◽  
Author(s):  
Steve M. Swaney ◽  
Hiroyuki Aoki ◽  
M. Clelia Ganoza ◽  
Dean L. Shinabarger

ABSTRACT The oxazolidinones represent a new class of antimicrobial agents which are active against multidrug-resistant staphylococci, streptococci, and enterococci. Previous studies have demonstrated that oxazolidinones inhibit bacterial translation in vitro at a step preceding elongation but after the charging ofN-formylmethionine to the initiator tRNA molecule. The event that occurs between these two steps is termed initiation. Initiation of protein synthesis requires the simultaneous presence of N-formylmethionine-tRNA, the 30S ribosomal subunit, mRNA, GTP, and the initiation factors IF1, IF2, and IF3. An initiation complex assay measuring the binding of [3H]N-formylmethionyl-tRNA to ribosomes in response to mRNA binding was used in order to investigate the mechanism of oxazolidinone action. Linezolid inhibited initiation complex formation with either the 30S or the 70S ribosomal subunits fromEscherichia coli. In addition, complex formation withStaphylococcus aureus 70S tight-couple ribosomes was inhibited by linezolid. Linezolid did not inhibit the independent binding of either mRNA or N-formylmethionyl-tRNA toE. coli 30S ribosomal subunits, nor did it prevent the formation of the IF2–N-formylmethionyl-tRNA binary complex. The results demonstrate that oxazolidinones inhibit the formation of the initiation complex in bacterial translation systems by preventing formation of theN-formylmethionyl-tRNA–ribosome–mRNA ternary complex.


RNA ◽  
2002 ◽  
Vol 8 (9) ◽  
pp. 1120-1128 ◽  
Author(s):  
NINA B??DDEKER ◽  
GINA BAHADOR ◽  
CRAIG GIBBS ◽  
ERIC MABERY ◽  
JOHN WOLF ◽  
...  

2017 ◽  
Vol 2 ◽  
pp. 84-90 ◽  
Author(s):  
Yujin Jeong ◽  
Hyeonseok Shin ◽  
Sang Woo Seo ◽  
Donghyuk Kim ◽  
Suhyung Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document