The role of bradykinin B1 receptor on cardiac remodeling in stroke-prone spontaneously hypertensive rats (SHR-SP)

2006 ◽  
Vol 387 (2) ◽  
pp. 203-209 ◽  
Author(s):  
Norihito Moniwa ◽  
Jun Agata ◽  
Makoto Hagiwara ◽  
Nobuyuki Ura ◽  
Kazuaki Shimamoto

Abstract An angiotensin-converting enzyme inhibitor (ACE-I) reduces cardiac remodeling and a bradykinin B2 receptor (B2R) antagonist partially abolishes this ACE-I effect. However, bradykinin has two different types of receptor, the B1 receptor (B1R) and B2R. Although B1R is induced under several pathological conditions, including hypertension, the role of cardiac B1R in hypertension is not clear. We therefore investigated the role of cardiac B1R in stroke-prone spontaneously hypertensive rats (SHR-SP) and Wistar-Kyoto (WKY) rats. The B1R mRNA expression level in the heart was significantly higher in SHR-SP than in WKY rats. Chronic infusion of a B1R antagonist for 4 weeks significantly elevated blood pressure and left-ventricular weight of SHR-SP. Morphological analysis indicated that cardiomyocyte size and cardiac fibrosis significantly increased after administration of the B1R antagonist. The phosphorylation of mitogen-activated protein (MAP) kinases, including ERK, p38, and JNK, was significantly increased in the hearts of SHR-SP rats receiving the B1R antagonist. The TGF-β1 expression level was significantly increased in SHR-SP rats treated with the B1R antagonist compared to that in WKY rats. The B1R antagonist significantly increased phosphorylation of Thr495 in endothelial nitric oxide synthase (eNOS), which is an inhibitory site of eNOS. These results suggest that the role of B1R in the heart may be attenuation of cardiac remodeling via inhibition of the expression of MAP kinases and TGF-β1 through an increase in eNOS activity in a hypertensive condition.

1999 ◽  
Vol 277 (4) ◽  
pp. R1057-R1062 ◽  
Author(s):  
Takahiro Nagayama ◽  
Takayuki Matsumoto ◽  
Makoto Yoshida ◽  
Mizue Suzuki-Kusaba ◽  
Hiroaki Hisa ◽  
...  

We investigated the role of nicotinic and muscarinic receptors in secretion of catecholamines induced by transmural electrical stimulation (ES) from isolated perfused adrenal glands of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats. ES (1–10 Hz) produced frequency-dependent increases in epinephrine (Epi) and norepinephrine (NE) output as measured in perfusate. The ES-induced increases in NE output, but not Epi output, were significantly greater in adrenal glands of SHRs than in those of WKY rats. Hexamethonium (10–100 μM) markedly inhibited the ES-induced increases in Epi and NE output from adrenal glands of SHRs and WKY rats. Atropine (0.3–3 μM) inhibited the ES-induced increases in Epi and NE output from adrenal glands of SHRs, but not from those of WKY rats. These results suggest that endogenous acetylcholine-induced secretion of adrenal catecholamines is predominantly mediated by nicotinic receptors in SHRs and WKY rats and that the contribution of muscarinic receptors may be different between these two strains.


2004 ◽  
Vol 27 (6) ◽  
pp. 399-408 ◽  
Author(s):  
Makoto HAGIWARA ◽  
Hideyuki MURAKAMI ◽  
Nobuyuki URA ◽  
Jun AGATA ◽  
Hideaki YOSHIDA ◽  
...  

1994 ◽  
Vol 113 (3) ◽  
pp. 1022-1028 ◽  
Author(s):  
Eneida G. Silva ◽  
Eugenio Frediani-Neto ◽  
Alice T. Ferreira ◽  
Antonio CM. Paiva ◽  
Therezinha B. Paiva

Sign in / Sign up

Export Citation Format

Share Document