Separation and Comparative Characterization of the Cationic Protease and Anionic Protease from the Culture Medium ofThermoactinomyces vulgaris

1982 ◽  
Vol 363 (2) ◽  
pp. 843-854 ◽  
Author(s):  
Rolf KLEINE ◽  
Ursula KETTMANN
2017 ◽  
Vol 4 (S) ◽  
pp. 25
Author(s):  
Karuppiah Thilakavathy

Preclinical studies on mesenchymal stem cells (MSC) have allowed the cells to be considered as a promising candidate for cellular therapy. The mouse is the most widely used species for studying the characteristics of MSC. In recent years, conflicting data were reported regarding growth kinetics, surface marker profile, differentiation capacity, genetic instability or malignant transformation and so forth, that may be a result of a range of factors. One of the factors probably is the culture medium formulation.  Here we have made a comparative characterization of bone marrow-derived mesenchymal stem cells (mBM-MSC), under the same experimental conditions, cultured using two common supplements, fetal bovine serum (FBS) and MesenCultTM Stimulatory Supplement (MSS). mBM-MSC isolated from the tibias of C57BL/6 mice were cultured and expanded in Dulbecco’s Modified Eagle’s Medium supplemented with either 15% FBS or 15% MSS.  Clonogenic potential, population doubling time, immunophenotyping, differentiation immunosuppression potentials and chromosome analysis of early and late passage of mBM-MSC were assessed.      The findings showed that the immunophenotype and differentiation potential of mBM-MSC were similar when cultured using these supplements irrespective of passages.  Variations were seen in clonogenic, growth, proliferation rate and immunosuppression potential of the mBM-MSC.  This study also revealed that prolonged culture will disrupt their genetic stability regardless of the supplements used.  The genetically mutated mBM-MSC were also found to maintain their stemness characteristics and immunosuppression potential.       In conclusion, culture medium formulation causes variations in the cultured MSC and may influence downstream investigation findings.


2016 ◽  
Vol 2 (2) ◽  
pp. 3
Author(s):  
Muhammad Irfan-maqsood ◽  
Hojjat Naderi-Meshkin ◽  
Asieh Heirani-Tabasi ◽  
Monireh Bahrami ◽  
Mahdi Mirahmadi ◽  
...  

Author(s):  
Aline Krindges ◽  
Vanusca Dalosto Jahno ◽  
Fernando Morisso

Incorporation studies of particles in different substrates with herbal assets growing. The objective of this work was the preparation and characterization of micro/nanoparticles containing cymbopogon nardus essential oil; and the incorporation of them on bacterial cellulose. For the development of the membranes was used the static culture medium and for the preparation of micro/nanoparticles was used the nanoprecipitation methodology. The incorporation of micro/nanoparticles was performed on samples of bacterial cellulose in wet and dry form. For the characterization of micro/nanoparticles were carried out analysis of SEM, zeta potential and particle size. For the verification of the incorporation of particulate matter in cellulose, analyses were conducted of SEM and FTIR. The results showed that it is possible the production and incorporation of micro/nanoparticles containing essential oil in bacterial cellulose membranes in wet form with ethanol.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 847
Author(s):  
Florian N. Gailliègue ◽  
Mindaugas Tamošiūnas ◽  
Franck M. André ◽  
Lluis M. Mir

Sonoporation is the process of cell membrane permeabilization, due to exposure to ultrasounds. There is a lack of consensus concerning the mechanisms of sonoporation: Understanding the mechanisms of sonoporation refines the choice of the ultrasonic parameters to be applied on the cells. Cells’ classical exposure systems to ultrasounds have several drawbacks, like the immersion of the cells in large volumes of liquid, the nonhomogeneous acoustic pressure in the large sample, and thus, the necessity for magnetic stirring to somehow homogenize the exposure of the cells. This article reports the development and characterization of a novel system allowing the exposure to ultrasounds of very small volumes and their observation under the microscope. The observation under a microscope imposes the exposure of cells and Giant Unilamellar Vesicles under an oblique incidence, as well as the very unusual presence of rigid walls limiting the sonicated volume. The advantages of this new setup are not only the use of a very small volume of cells culture medium/microbubbles (MB), but the presence of flat walls near the sonicated region that results in a more homogeneous ultrasonic pressure field, and thus, the control of the focal distance and the real exposure time. The setup presented here comprises the ability to survey the geometrical and dynamical aspects of the exposure of cells and MB to ultrasounds, if an ultrafast camera is used. Indeed, the setup thus fulfills all the requirements to apply ultrasounds conveniently, for accurate mechanistic experiments under an inverted fluorescence microscope, and it could have interesting applications in photoacoustic research.


Cellulose ◽  
2021 ◽  
Author(s):  
Mengchen Zhao ◽  
Yuko Ono ◽  
Yuichi Noguchi ◽  
Shuji Fujisawa ◽  
Tsuguyuki Saito

2010 ◽  
Vol 16 (40) ◽  
pp. 12199-12206 ◽  
Author(s):  
Thomas K. Wood ◽  
Warren E. Piers ◽  
Brian A. Keay ◽  
Masood Parvez

2014 ◽  
Vol 54 (4) ◽  
pp. 275-282
Author(s):  
M. M. Domanov ◽  
Z. I. Verkhovskaya ◽  
A. K. Ambrosimov ◽  
E. G. Domanova

Sign in / Sign up

Export Citation Format

Share Document