scholarly journals Potential prognostic markers and significant lncRNA–mRNA co-expression pairs in laryngeal squamous cell carcinoma

2021 ◽  
Vol 16 (1) ◽  
pp. 544-557
Author(s):  
Junguo Wang ◽  
Dingding Liu ◽  
Yajun Gu ◽  
Han Zhou ◽  
Hui Li ◽  
...  

Abstract lncRNA–mRNA co-expression pairs and prognostic markers related to the development of laryngeal squamous cell carcinoma (LSCC) were investigated. The lncRNA and mRNA expression data of LSCC in GSE84957 and RNA-seq data of 112 LSCC samples from TCGA database were used. Differentially expressed genes (DEGs) and lncRNAs (DE-lncRNAs) between LSCC and para-cancer tissues were identified. Co-expression analysis of DEGs and DE-lncRNA was conducted. Protein–protein interaction network for co-expressed DEGs of top 25 DE-lncRNA was constructed, followed by survival analysis for key nodes in co-expression network. Finally, expressions of several DE-lncRNAs and DEGs were verified using qRT-PCR. The lncRNA–mRNA network showed that ANKRD20A5P, C21orf15, CYP4F35P, LOC_I2_011146, XLOC_006053, XLOC_I2_003881, and LOC100506027 were highlighted in network. Some DEGs, including FUT7, PADI1, PPL, ARHGAP40, MUC21, and CEACAM1, were co-expressed with above lncRNAs. Survival analysis showed that PLOD1, GLT25D1, and KIF22 were significantly associated with prognosis. qRT-PCR results showed that the expressions of MUC21, CEACAM1, FUT7, PADI1, PPL, ARHGAP40, ANKRD20A5P, C21orf15, CYP4F35P, XLOC_I2_003881, LOC_I2_011146, and XLOC_006053 were downregulated, whereas the expression of LOC100506027 was upregulated in LSCC tissues. PLOD1, GLT25D1, and KIF22 may be potential prognostic markers in the development of LSCC. C21orf15-MUC21/CEACAM1/FUT7/PADI1/PPL/ARHGAP40 are potential lncRNA–mRNA pairs that play significant roles in the development of LSCC.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zhisen Shen ◽  
Chongchang Zhou ◽  
Jinyun Li ◽  
Dong Ye ◽  
Hongxia Deng ◽  
...  

The purpose of this study was to evaluate the contribution ofSHISA3promoter methylation to laryngeal squamous cell carcinoma (LSCC).SHISA3promoter methylation status and expression were determined using methylation-specific polymerase chain reaction (MSP) and quantitative real-time PCR (qRT-PCR) in 93 paired LSCC and adjacent normal tissues, respectively. Furthermore, the regulatory function of theSHISA3promoter fragment was analyzed using a luciferase reporter assay. The results reveal that there is a significant increase inSHISA3methylation in LSCC tissues compared with corresponding nontumor tissuesP=4.58E-12. The qRT-PCR results show a significant association betweenSHISA3methylation and expression in LSCCP=1.67E-03. In addition, the area under the receiver operating characteristic curve was 0.91. Consequently, a log-rank test and multivariate Cox analysis suggest thatSHISA3promoter hypermethylation is a predictor of poor overall survival for LSCC (log-rankP= 0.024; HR = 2.71; 95% CI = 1.024–7.177;P= 0.047). The results indicate thatSHISA3promoter hypermethylation might increase the risk of LSCC through regulation of gene expression and is a potential diagnostic and prognostic biomarker for LSCC.


2020 ◽  
Vol 19 ◽  
pp. 153303382098578
Author(s):  
Zhibin Jing ◽  
Sitong Guo ◽  
Peng Zhang ◽  
Zheng Liang

Objective: This study aims to construct a systematic mRNA-miRNA-lncRNA network to identify novel lncRNAs and miRNAs biomarkers for laryngeal squamous cell carcinoma (LSCC). Methods: The mRNA, miRNA and lncRNA expression profiles of LSCC were obtained from Gene Expression Omnibus (GEO) database. The differentially expressed mRNAs, miRNAs and lncRNAs (DEmRNAs, DEmiRNAs and DElncRNAs) were screened between LSCC tissues and controls. Functional analysis of DEmRNAs, DEmRNAs targeted by DEmiRNAs and DEmRNAs targeted by DElncRNAs were respectively performed. The miRWalk, starbase and DIANA-LncBase were respectively used to predict DEmiRNAs-DEmRNAs, DElncRNAs-DEmRNAs and DElncRNAs-DEmiRNAs pairs. ceRNA network was built by DEmiRNAs-DEmRNAs and DElncRNAs-DEmiRNAs pairs. LncRNA subcellular localization was predicted using lncLocator. Using published The Cancer Genome Atlas (TCGA) and external datasets (GSE127165 and GSE133632), we also validated the expression of key DElncRNAs and DEmiRNAs in ceRNA network. The diagnostic and prognostic value of candidate genes was evaluated by ROC curve analysis and survival analysis, respectively. Results: There were 5 mRNA datasets, 3 miRNA datasets and 2 lncRNA datasets in this study. Totally, 2957 DEmRNAs, 61 DElncRNAs and 23 DEmiRNAs were identified. Functional analysis of DEmRNAs shows that they were significantly enriched in cancer-related pathways, such as DNA replication and extracellular matrix organization. There were 11 DEmiRNAs, 17 DElncRNAs and 967 DEmRNAs in the ceRNA network. Notably, up-regulated lncRNA DGCR5-down-regulated has-miR-338-3p/has-miR-139-5p pairs in this network were experimentally validated. Moreover, down-regulated AL121839.2, down-regulated LINC02147, up-regulated AC079328.2, up-regulated AC004943.2 and up-regulated HMGA2-AS1 were located in the cytoplasm. AL121839.2 and LINC02147 interacted with has-miR-1246. AC004943.2, AC079328.2 and HMGA2-AS1 targeted has-miR-3185, has-miR-3137 and has-miR-582-5p, respectively. Based on the TCGA and external datasets (GSE127165 and GSE133632), DGCR5 and AC004943.2 were significantly up-regulated while AL121839.2 and LINC02147, has-miR-338-3p, has-miR-139-5p and has-miR-582-5p were significantly down-regulated, which were consistent with our integration analysis. DGCR5, AL121839.2, LINC02147, AC004943.2, has-miR-338-3p, has-miR-139-5p and has-miR-582-5p could predict the occurrence of LSCC. Survival analysis suggested that only, AL121839.2 has potential prognostic value for LSCC. Conclusion: This study provided novel insights into the ceRNA network and uncovered novel lncRNAs and miRNAs with diagnostic value in LSCC.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Wang ◽  
Kexing Lv ◽  
Weixiong Chen ◽  
Jing Zhao ◽  
Jie Luo ◽  
...  

Previous studies have found that miR-375 and miR-205 were significantly dysregulated in laryngeal squamous cell carcinoma, which contributed to the invasion and migration of LSCC. However, the mechanisms of miR-375 and miR-205 regulating the invasion and migration of LSCC remain unknown. qRT-PCR was performed in 40 pairs of tissue samples to investigate the expression of miR-375 and miR-205 in LSCC and paracarcinoma tissues. To investigate whether or not miR-375 and miR-205 regulated the invasion and migration of LSCC synergistically via AKT-mediated epithelial-mesenchymal transition, miR-375 mimic and miR-205 inhibitor were transfected into SNU899 cells and miR-375 inhibitor and miR-205 mimic were transfected into SNU899 cells, respectively, with or without AKT inhibitor. Then the expressions of miR-375 and miR-205 were validated by qRT-PCR, cell migration and invasion were determined by wound healing assay and transwell invasive assay, and western blot analysis was performed to detect the expression of related proteins. Our results showed that miR-375 and miR-205 regulated the invasion and migration of LSCC via AKT-mediated EMT synergistically. In conclusion, our findings provided not only new information about the molecular mechanism of miRNAs regulating invasion and migration of LSCC, but also a theoretical principle for potential targeting therapy of laryngeal squamous carcinoma.


Sign in / Sign up

Export Citation Format

Share Document