scholarly journals Orexin modulates brown adipose tissue thermogenesis

2012 ◽  
Vol 3 (4) ◽  
pp. 381-386 ◽  
Author(s):  
Christopher J. Madden ◽  
Domenico Tupone ◽  
Shaun F. Morrison

AbstractNon-shivering thermogenesis in brown adipose tissue (BAT) plays an important role in thermoregulation. In addition, activations of BAT have important implications for energy homeostasis due to the metabolic consumption of energy reserves entailed in the production of heat in this tissue. In this conceptual overview, we describe the role of orexins/hypocretins within the central nervous system in the modulation of thermogenesis in BAT under several physiological conditions. Within this framework, we consider potential neural mechanisms underlying the pathological conditions associated with the absence of the central orexinergic modulation of BAT thermogenesis and energy expenditure. Overall, the experimental basis for our understanding of the role of central orexin in regulating body temperature and energy homeostasis provides an illustrative example that highlights several general principles and caveats that should help guide future investigations of the neurochemical regulation of thermogenesis and metabolism.

2007 ◽  
Vol 7 (2) ◽  
pp. 378-393 ◽  
Author(s):  
Sílvia Barceló-Batllori ◽  
Susana G. Kalko ◽  
Yaiza Esteban ◽  
Sílvia Moreno ◽  
María C. Carmona ◽  
...  

2021 ◽  
Author(s):  
Raghbendra Kumar Dutta ◽  
Joon No Lee ◽  
Yunash Maharjan ◽  
Channy Park ◽  
Seong-Kyu Choe ◽  
...  

Abstract Background Fatty acids (FA) derived from adipose tissue and liver serve as the main fuel in thermogenesis of brown adipose tissue (BAT). Catalase, a peroxisomal enzyme, plays an important role in maintaining intracellular redox homeostasis by decomposing hydrogen peroxide to either water or oxygen that oxidize and provide fuel for cellular metabolism. Although the antioxidant enzymatic activity of catalase is well known, its role in the metabolism and maintenance of energy homeostasis has not yet been revealed. The present study investigated the role of catalase in lipid metabolism and thermogenesis during nutrient deprivation in catalase-knockout (KO) mice. Results We found that hepatic triglyceride accumulation in KO mice decreased during sustained fasting due to lipolysis through reactive oxygen species (ROS) generation in adipocytes. Furthermore, the free FA released from lipolysis were shuttled to BAT through the activation of CD36 and catabolized by lipoprotein lipase in KO mice during sustained fasting. Although the exact mechanism for the activation of the FA receptor enzyme is still unclear, we found that ROS generation in adipocytes mediated the shuttling of FA to BAT. Conclusions Taken together, our findings uncover the novel role of catalase in lipid metabolism and thermogenesis in BAT, which may be useful in understanding metabolic dysfunction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kasiphak Kaikaew ◽  
Aldo Grefhorst ◽  
Jenny A. Visser

Excessive fat accumulation in the body causes overweight and obesity. To date, research has confirmed that there are two types of adipose tissue with opposing functions: lipid-storing white adipose tissue (WAT) and lipid-burning brown adipose tissue (BAT). After the rediscovery of the presence of metabolically active BAT in adults, BAT has received increasing attention especially since activation of BAT is considered a promising way to combat obesity and associated comorbidities. It has become clear that energy homeostasis differs between the sexes, which has a significant impact on the development of pathological conditions such as type 2 diabetes. Sex differences in BAT activity may contribute to this and, therefore, it is important to address the underlying mechanisms that contribute to sex differences in BAT activity. In this review, we discuss the role of sex hormones in the regulation of BAT activity under physiological and some pathological conditions. Given the increasing number of studies suggesting a crosstalk between sex hormones and the hypothalamic-pituitary-adrenal axis in metabolism, we also discuss this crosstalk in relation to sex differences in BAT activity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ellen Paula Santos da Conceição ◽  
Shaun F. Morrison ◽  
Georgina Cano ◽  
Pierfrancesco Chiavetta ◽  
Domenico Tupone

Abstract Within the central neural circuitry for thermoregulation, the balance between excitatory and inhibitory inputs to the dorsomedial hypothalamus (DMH) determines the level of activation of brown adipose tissue (BAT) thermogenesis. We employed neuroanatomical and in vivo electrophysiological techniques to identify a source of excitation to thermogenesis-promoting neurons in the DMH that is required for cold defense and fever. Inhibition of median preoptic area (MnPO) neurons blocked the BAT thermogenic responses during both PGE2-induced fever and cold exposure. Disinhibition or direct activation of MnPO neurons induced a BAT thermogenic response in warm rats. Blockade of ionotropic glutamate receptors in the DMH, or brain transection rostral to DMH, blocked cold-evoked or NMDA in MnPO-evoked BAT thermogenesis. RNAscope technique identified a glutamatergic population of MnPO neurons that projects to the DMH and expresses c-Fos following cold exposure. These discoveries relative to the glutamatergic drive to BAT sympathoexcitatory neurons in DMH augment our understanding of the central thermoregulatory circuitry in non-torpid mammals. Our data will contribute to the development of novel therapeutic approaches to induce therapeutic hypothermia for treating drug-resistant fever, and for improving glucose and energy homeostasis.


2019 ◽  
Author(s):  
Chuanhai Zhang ◽  
Xiaoyun He ◽  
Yao Sheng ◽  
Jia Xu ◽  
Cui Yang ◽  
...  

AbstractBackground/objectives:Disorder of energy homeostasis can lead to a variety of metabolic diseases, especially obesity. Brown adipose tissue (BAT) is a promising potential therapeutic target for the treatment of obesity and related metabolic diseases. Allicin, a main bioactive ingredient in garlic, has multiple biology and pharmacological function. However, the role of Allicin, in the regulation of metabolic organ, especially the role of activation of BAT, has not been well studied. Here, we analyzed the role of Allicin in whole-body metabolism and the activation of BAT.Results:Allicin had a significant effect in inhibiting body weight gain, decreasing adiposity, maintaining glucose homeostasis, improving insulin resistance, and ameliorating hepatic steatosis in diet-introduced obesity (DIO) mice. Then we find that Allicin can strongly activate brown adipose tissue (BAT). The activation of brown adipocyte treated with Allicin was also confirmed in mouse primary brown adipocytes.Conclusion:Allicin can ameliorate obesity through activating brown adipose tissue. Our findings provide a promising therapeutic approach for the treatment of obesity and metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document