scholarly journals Overexpression and pre-treatment of recombinant human Secretory Leukocyte Protease Inhibitor (rhSLPI) reduces an in vitro ischemia/reperfusion injury in rat cardiac myoblast (H9c2) cell

2018 ◽  
Vol 9 (1) ◽  
pp. 17-32 ◽  
Author(s):  
Eakkapote Prompunt ◽  
Nitirut Nernpermpisooth ◽  
Jantira Sanit ◽  
Sarawut Kumphune

AbstractOne of the major causes of cardiac cell death during myocardial ischemia is the oversecretion of protease enzymes surrounding the ischemic tissue. Therefore, inhibition of the protease activity could be an alternative strategy for preventing the expansion of the injured area. In the present study, we investigated the effects of Secretory Leukocyte Protease Inhibitor (SLPI), by means of overexpression and treatment of recombinant human SLPI (rhSLPI) in an in vitro model. Rat cardiac myoblast (H9c2) cells overexpressing rhSLPI were generated by gene delivery using pCMV2-SLPI-HA plasmid. The rhSLPI-H9c2 cells, mock transfected cells, and wild-type (WT) control were subjected to simulated ischemia/reperfusion (sI/R). Moreover, the treatment of rhSLPI in H9c2 cells was also performed under sI/R conditions. The results showed that overexpression of rhSLPI in H9c2 cells significantly reduced sI/R-induced cell death and injury, intracellular ROS level, and increased Akt phosphorylation, when compared to WT and mock transfection (p <0.05). Treatment of rhSLPI prior to sI/R reduced cardiac cell death and injury, and intra-cellular ROS level. In addition, 400 ng/ml rhSLPI treatment, prior to sI, significantly inhibited p38 MAPK phosphorylation and rhSLPI at 400–1000 ng/ml could increase Akt phosphorylation.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Dandan Zhao ◽  
Qing Li ◽  
Qiuping Huang ◽  
Xuguang Li ◽  
Min Yin ◽  
...  

Background. The intravenous anesthetic propofol is reported to be a cardioprotective agent against ischemic-reperfusion injury in the heart. However, the regulatory mechanism still remains unclear.Methods. In this study, we used H9c2 cell line under condition of oxygen glucose deprivation (OGD) followed by reperfusion (OGD/R) to inducein vitrocardiomyocytes ischemia-reperfusion injury. Propofol (5, 10, and 20 μM) was added to the cell cultures before and during the OGD/R phases to investigate the underlying mechanism.Results. Our data showed that OGD/R decreased cell viability, and increased lactate dehydrogenase leakage, and reactive oxygen species and malondialdehyde production in H9c2 cells, all of which were significantly reversed by propofol. Moreover, we found that propofol increased both the activities and protein expressions of superoxide dismutase and catalase. In addition, propofol increased FoxO1 expression in a dose-dependent manner and inhibited p-AMPK formation significantly.Conclusions. These results indicate that the propofol might exert its antioxidative effect through FoxO1 in H9c2 cells, and it has a potential therapeutic effect on cardiac disorders involved in oxidative stress.


2021 ◽  
Vol 8 ◽  
Author(s):  
Gecai Chen ◽  
Aihuan Yue ◽  
Meixiang Wang ◽  
Zhongbao Ruan ◽  
Li Zhu

The purpose of the study was to explore the mechanism by which myocardial ischemia-reperfusion (I/R) injury-induced exosomes modulate mesenchymal stem cells (MSCs) to regulate myocardial injury. In this study, we established an I/R injury model in vivo and a hypoxia-reoxygenation (H/R) model in vitro. Then, exosomes isolated from H/R-exposed H9c2 cells were characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot analysis. CCK-8 assays and flow cytometry were performed to assess cell injury. ELISA was applied to determine the level of insulin-like growth factor 1 (IGF-1). Echocardiography was used to assess cardiac function in vivo. HE staining and TUNEL assays were conducted to analyze myocardial injury in vivo. In the present study, H/R-exposed H9c2 cells induced IGF-1 secretion from MSCs to inhibit cell myocardial injury. Moreover, exosomes derived from H/R-exposed H9c2 cells were introduced to MSCs to increase IGF-1 levels. The lncRNA KLF3-AS1 was dramatically upregulated in exosomes derived from H/R-treated H9c2 cells. Functional experiments showed that the exosomal lncRNA KLF3-AS1 promoted IGF-1 secretion from MSCs and increased H9c2 cell viability. In addition, miR-23c contains potential binding sites for both KLF3-AS1 and STAT5B, and miR-23c directly bound to the 3'-UTRs of KLF3-AS1 and STAT5B. Furthermore, the lncRNA KLF3-AS1 promoted IGF-1 secretion from MSCs and rescued myocardial cell injury in vivo and in vitro by upregulating STAT5B expression. The lncRNA KLF3-AS1 may serve as a new direction for the treatment of myocardial I/R injury.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Sergiy M Nadtochiy ◽  
Paul S Brookes

Introduction: The adult heart utilizes mostly fat for energy production, with adaptation to different fuels (“metabolic plasticity”) being a hallmark of the healthy heart. However, metabolic maladaptation is known to occur in heart failure. As such, the ability of the heart to metabolize specific substrates could impact the outcome of pathological insults, such as ischemia-reperfusion (IR) injury. The aim of this study was to develop a system whereby adult mouse cardiomyocytes (AMC) subjected to IR injury could be supplied with different fuels, and metabolism measured in real-time. Methods: AMC were divided in 3 groups, supplied either with glucose (GLU, 5mM), palmitate/fat free BSA (FAT, 100µM) or GLU+FAT. A previously developed method for in-vitro IR injury using a Seahorse XF24 [1], was adopted for ACM. IR comprised 60 min. ischemia and 60 min. reperfusion, and additional metabolic parameters were measured separately using mitochondrial inhibitors and uncouplers [2]. Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were simultaneously measured during the IR protocol, followed by a cell death assay. Results: FAT cells showed higher baseline OCR and lower ECAR rates compare to GLU cells, although uncoupled OCR was lower in FAT group, suggesting a lower metabolic reserve capacity for cells respiring on fat. Upon IR, the drop in pH was significantly greater in GLU compare to FAT, indicating faster lactate production. During reperfusion, both OCR and ECAR recovered to pre-ischemic levels in GLU cells but failed to do so in FAT cells. Post-IR cell death was significantly higher in FAT vs. GLU. Surprisingly, GLU+FAT (modeling a “physiologic” substrate mix) replicated the same metabolic profile and cell death as GLU. Conclusions: (i) AMC had better recovery from IR injury using glucose as fuel. (ii) Lower cell viability in FAT (vs. GLU) correlated with smaller metabolic reserve capacity and with a smaller pH drop during ischemia. This is consistent with a known protective role for acidification during IR injury. (iii) Mixed substrates (GLU+FAT) gave a similar response to glucose alone, suggesting that fat may not be toxic, rather glucose is protective, in IR injury. [1] Circ Res. (2012), 110. 948-57. [2] J Vis Exp. (2010), 46. pii: 2511.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Kun Liu ◽  
Fei Wang ◽  
Shuo Wang ◽  
Wei-Nan Li ◽  
Qing Ye

The aim of this study was to investigate the cardioprotective effect of mangiferin (MAF) in vitro and in vivo. Oxidative stress and inflammatory injury were detected in coronary artery ligation in rats and also in hypoxia-reoxygenation- (H/R-) induced H9c2 cells. MAF inhibited myocardial oxidative stress and proinflammatory cytokines in rats with coronary artery occlusion. The ST segment of MAF treatment groups also resumed. Triphenyltetrazolium chloride (TTC) staining and pathological analysis showed that MAF could significantly reduce myocardial injury. In vitro data showed that MAF could improve hypoxia/reoxygenation- (H/R-) induced H9c2 cell activity. In addition, MAF could significantly reduce oxidative stress and inflammatory pathway protein expression in H/R-induced H9c2 cells. This study has clarified the protective effects of MAF on myocardial injury and also confirmed that oxidative stress and inflammation were involved in the myocardial ischemia-reperfusion injury (I/R) model.


2015 ◽  
Vol 122 (4) ◽  
pp. 795-805 ◽  
Author(s):  
Jessica M. Olson ◽  
Yasheng Yan ◽  
Xiaowen Bai ◽  
Zhi-Dong Ge ◽  
Mingyu Liang ◽  
...  

Abstract Background: Anesthetic cardioprotection reduces myocardial infarct size after ischemia–reperfusion injury. Currently, the role of microRNA in this process remains unknown. MicroRNAs are short, noncoding nucleotide sequences that negatively regulate gene expression through degradation or suppression of messenger RNA. In this study, the authors uncovered the functional role of microRNA-21 (miR-21) up-regulation after anesthetic exposure. Methods: MicroRNA and messenger RNA expression changes were analyzed by quantitative real-time polymerase chain reaction in cardiomyocytes after exposure to isoflurane. Lactate dehydrogenase release assay and propidium iodide staining were conducted after inhibition of miR-21. miR-21 target expression was analyzed by Western blot. The functional role of miR-21 was confirmed in vivo in both wild-type and miR-21 knockout mice. Results: Isoflurane induces an acute up-regulation of miR-21 in both in vivo and in vitro rat models (n = 6, 247.8 ± 27.5% and 258.5 ± 9.0%), which mediates protection to cardiomyocytes through down-regulation of programmed cell death protein 4 messenger RNA (n = 3, 82.0 ± 4.9% of control group). This protective effect was confirmed by knockdown of miR-21 and programmed cell death protein 4 in vitro. In addition, the protective effect of isoflurane was abolished in miR-21 knockout mice in vivo, with no significant decrease in infarct size compared with nonexposed controls (n = 8, 62.3 ± 4.6% and 56.2 ± 3.2%). Conclusions: The authors demonstrate for the first time that isoflurane mediates protection of cardiomyocytes against oxidative stress via an miR-21/programmed cell death protein 4 pathway. These results reveal a novel mechanism by which the damage done by ischemia/reperfusion injury may be decreased.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Samuel Slone ◽  
Sarah R. Anthony ◽  
Lindsey Lanzillotta ◽  
Michelle L. Nieman ◽  
Lisa C. Green ◽  
...  

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Dongchao Lv ◽  
Shengguang Ding ◽  
Ping Chen ◽  
Yihua Bei ◽  
Chongjun Zhong ◽  
...  

Ischemia-reperfusion injury (IRI) following acute myocardial infarction (AMI) has no effective treatment and a poor prognosis. microRNA (miRNA)-19b is a key functional member of miRNA-19-72 cluster family, regulating cellular proliferation, apoptosis, differentiation, and metabolism. Dysregulation of the miR-19b cluster is critically involved in a spectrum of cardiovascular diseases. However, the role of miR-19b in myocardial IRI is unknown. In this study, we found that miR-19b was downregulated in a mouse model of IRI. Meanwhile, about 50% downregulation of miR-19b was detected in H2O2-treated H9C2 cells mimicking myocardial IRI. We also found that overexpression of miR-19b decreased H2O2-induced apoptosis (36.02%±3.92% vs 29.34%±0.79% in nc-mimics vs miR-19b-mimics, respectively) and necrosis (23.11%±1.64% vs 18.76%±0.71% in nc-mimics vs miR-19b-mimics, respectively), and increased proliferation of H9C2 cells in vitro, while downregulation of miR-19b had reverse effects. Furthermore, PTEN, a previously validated target gene of miR-19b, has been found to be negatively regulated by miR-19b at protein levels in H9C2 cells. These data reveal the potential of miR-19b as a therapeutic target for myocardial IRI.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yan Leng ◽  
Yang Wu ◽  
Shaoqing Lei ◽  
Bin Zhou ◽  
Zhen Qiu ◽  
...  

Patients with diabetes are more vulnerable to myocardial ischemia/reperfusion (MI/R) injury, which is associated with excessive reactive oxygen species (ROS) generation and decreased antioxidant defense. Histone deacetylase 6 (HDAC6), a regulator of the antioxidant protein peroxiredoxin 1 (Prdx1), is associated with several pathological conditions in the cardiovascular system. This study investigated whether tubastatin A (TubA), a highly selective HDAC6 inhibitor, could confer a protective effect by modulating Prdx1 acetylation in a rat model of MI/R and an in vitro model of hypoxia/reoxygenation (H/R). Here, we found that diabetic hearts with excessive HDAC6 activity and decreased acetylated-Prdx1 levels were more vulnerable to MI/R injury. TubA treatment robustly improved cardiac function, reduced cardiac infarction, attenuated ROS generation, and increased acetylated-Prdx1 levels in diabetic MI/R rats. These results were further confirmed by an in vitro study using H9c2 cells. Furthermore, a study using Prdx1 acetyl-silencing mutants (K197R) showed that TubA only slightly attenuated H/R-induced cell death and ROS generation in K197R-transfected H9c2 cells exposed to high glucose (HG), but these differences were not statistically significant. Taken together, these findings suggest that HDAC6 inhibition reduces ROS generation and confers a protective effect against MI/R or H/R injury by modulating Prdx1 acetylation at K197.


Sign in / Sign up

Export Citation Format

Share Document