Hyaluronic acid-modified zirconium phosphate nanoparticles for potential lung cancer therapy

Author(s):  
Ranwei Li ◽  
Tiecheng Liu ◽  
Ke Wang

AbstractNovel tumor-targeting zirconium phosphate (ZP) nanoparticles modified with hyaluronic acid (HA) were developed (HA-ZP), with the aim of combining the drug-loading property of ZP and the tumor-targeting ability of HA to construct a tumor-targeting paclitaxel (PTX) delivery system for potential lung cancer therapy. The experimental results indicated that PTX loading into the HA-ZP nanoparticles was as high as 20.36%±4.37%, which is favorable for cancer therapy. PTX-loaded HA-ZP nanoparticles increased the accumulation of PTX in A549 lung cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity

ChemPhysChem ◽  
2018 ◽  
Vol 19 (16) ◽  
pp. 2058-2069 ◽  
Author(s):  
Yi Yang ◽  
Yanpeng Jia ◽  
Yao Xiao ◽  
Ying Hao ◽  
Lan Zhang ◽  
...  

2018 ◽  
Vol 259 ◽  
pp. 154-166 ◽  
Author(s):  
Alanood S. Almurshedi ◽  
Mahasen Radwan ◽  
Samia Omar ◽  
Ayodele A. Alaiya ◽  
Mohamed M. Badran ◽  
...  

2020 ◽  
Vol 11 ◽  
pp. 354-369
Author(s):  
Gayathri Kandasamy ◽  
Elena N Danilovtseva ◽  
Vadim V Annenkov ◽  
Uma Maheswari Krishnan

The present work explores the ability of poly(1-vinylimidazole) (PVI) to complex small interfering RNA (siRNA) silencing vascular endothelial growth factor (VEGF) and the in vitro efficiency of the formed complexes in A549 lung cancer cells. The polyplex formed was found to exhibit 66% complexation efficiency. The complexation was confirmed by gel retardation assays, FTIR and thermal analysis. The blank PVI polymer was not toxic to cells. The polyplex was found to exhibit excellent internalization and escaped the endosome effectively. The polyplex was more effective than free siRNA in silencing VEGF in lung cancer cells. The silencing of VEGF was quantified using Western blot and was also reflected in the depletion of HIF-1α levels in the cells treated with the polyplex. VEGF silencing by the polyplex was found to augment the cytotoxic effects of the chemotherapeutic agent 5-fluorouracil. Microarray analysis of the mRNA isolated from cells treated with free siRNA and the polyplex reveal that the VEGF silencing by the polyplex also altered the expression levels of several other genes that have been connected to the proliferation and invasion of lung cancer cells. These results indicate that the PVI complexes can be an effective agent to counter lung cancer.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Jinyuan He ◽  
Chulian Gong ◽  
Jie Qin ◽  
Mingan Li ◽  
Shaohong Huang

Abstract Current cancer therapy usually succumbs to many extracellular and intracellular barriers, among which untargeted distribution and multidrug resistance (MDR) are two important difficulties responsible for poor outcome of many drug delivery systems (DDS). Here, in our study, the dilemma was addressed by developing a cancer cell membrane (CCM)-coated silica (SLI) nanoparticles to co-deliver miR495 with doxorubicin (DOX) for effective therapy of lung cancer (CCM/SLI/R-D). The homologous CCM from MDR lung cancer cells (A549/DOX) was supposed to increase the tumor-homing property of the DDS to bypass the extracellular barriers. Moreover, the MDR of cancer cells were conquered through downregulation of P-glycoprotein (P-gp) expression using miR495. It was proved that miR495 could significantly decrease the expression of P-gp which elevated intracellular drug accumulation in A549/DOX. The in vitro and in vivo results exhibited that CCM/SLI/R-D showed a greatly enhanced therapeutic effect on A549/DOX, which was superior than applying miR495 or DOX alone. The preferable effect of CCM/SLI/R-D on conquering the MDR in lung cancer provides a novel alternative for effective chemotherapy of MDR cancers.


Author(s):  
Somayyeh Ghareghomi ◽  
Vahideh Atabaki ◽  
Naseh Abdollahzadeh ◽  
Shahin Ahmadian ◽  
Salar Hafez Ghoran

One of the central signaling pathways with a regulatory effect on cell proliferation and survival is Akt/mTOR. In many human cancer types, for instance, lung cancer, the overexpression of Akt/mTOR has been reported. For this reason, either targeting cancer cells by synthetic or natural products affecting the Akt/mTOR pathway down-regulation is a useful strategy in cancer therapy. Direct inhibition of the signaling pathway or modulation of each related molecule could have significant feedback on the growth and proliferation of cancer cells. A variety of secondary metabolites has been identified to directly inhibit the AKT/mTOR signaling, which is important in the field of drug discovery. Naturally occurring nitrogenous and phenolic compounds can emerge as two pivotal classes of natural products possessing anticancer abilities. Herein, we have summarized the alkaloids and flavonoids for lung cancer treatment together with all the possible mechanisms of action relying on the Akt/mTOR pathway down-regulation. This review suggested that in search of new drugs, phytochemicals could be considered as promising scaffolds to be developed into efficient drugs for the treatment of cancer. In this review, the terms "Akt/mTOR", "Alkaloid", "flavonoid", and "lung cancer" were searched without any limitation in search criteria in Scopus, PubMed, Web of Science, and Google scholar engines.


2019 ◽  
Author(s):  
Gayathri kandasamy ◽  
Elena N Danilovtseva ◽  
Vadim annenkov ◽  
Uma maheswari Krishnan

The present work explores the ability of poly (1-vinyl imidazole) to complex si-RNA against vascular endothelial growth factor (VEGF) and its in vitro efficiency in A549 lung cancer cells. The polyplex formed was found to exhibit 66% complexation efficiency. The complexation was confirmed by gel retardation assay, FTIR and thermal analysis. The blank PVI polymer was not toxic to cells. The polyplex was found to exhibit excellent internalization and escaped the endosome effectively. The polyplex was more effective than the free si-RNA in silencing VEGF in lung cancer cells. The silencing of VEGF was quantified using Western blot which was also reflected in depletion of HIF-1a levels in the cells treated with the polyplex. VEGF silencing by the polyplex was found to augment the cytotoxic effects of the chemotherapeutic agent 5-fluorouracil. Microarray analysis of the mRNA isolated from cells treated with free siRNA and polyplex reveal that the superior VEGF silencing by the polyplex altered the expression levels of several other genes that have been implicated in the proliferation and invasion of lung cancer cells. These results indicate that PVI complexed anti-VEGF can be an effective strategy to counter lung cancer.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4206-4206
Author(s):  
Julia Nguyen ◽  
Katherine H.N. Johnson ◽  
Teena Pasrija ◽  
Robert A. Kratzke ◽  
Aaron R. Hyams ◽  
...  

Abstract Mu opioid receptor (MOR) stimulates MAPK/ERK phosphorylation, by transactivating epidermal growth factor receptor (EGFR) in astrocytes (Belcheva MM et al J Biol Chem 2001, 276, 33847–53) and by transactivating vascular endothelial growth factor receptor-2 (VEGFR2) in endothelial cells (Chen C et al Curr Neurovasc Res 2006, 3, 171–80). EGFR and VEGFR2 are two critical targets for lung cancer therapy. Since opioids used to treat pain in cancer act via MOR, it is critical to understand the role of MOR in growth and survival promoting signaling in lung cancer. Therefore, we examined if MOR co-activates, EGFR mediated signaling in non-small cell human lung cancer cells, HL2009, HL1299 and HL460; and VEGFR2 in murine blood outgrowth endothelial cells (BOEC) derived from wild type (wt) and MOR knockout (KO) mice. We observed that HL2009 cells showed a 3–5 fold higher expression of MOR (by RT-PCR) as well as constitutive activation of phospho-EGFR (by Western) as compared to HL1299 and HL460. Morphine (100 nM) stimulated the phosphorylation of EGFR, MAPK/ERK and Akt in a time-dependent manner similar to that induced by 10 nM EGF, in HL2009 but not in HL460 cells. Morphine as well as EGF-induced phosphorylation peaked after 10 and 30 min of stimulation and it was accompanied by the translocation of phospho-EGFR to the nucleus in HL2009 but not in HL460 cells. Since, nuclear expression of phospho-EGFR is associated with poor prognosis in some human cancers, it is possible that MOR activation upon opioid exposure may impart resistance to lung cancer therapy, by stimulating the translocation of phospho-EGFR to the nucleus. On the other hand, morphine also stimulated the phosphorylation of VEGFR2 and MAPK/ERK in BOEC from wt mice but not in BOEC from MOR KO mice. Thus, opioid analgesics may stimulate VEGFR2 via MOR and stimulate angiogenesis. Acquired resistance to EGFR therapy in non small cell lung cancer is associated with increased VEGF activity. Therefore, simultaneous co-activation of EGFR and VEGFR2 via MOR in lung cancer may promote cancer progression and resistance to VEGF and/or EGFR based therapies. We speculate that MOR-specific antagonists in combination with VEGF/EGFR based therapies may prove to be beneficial in treating lung cancer.


Nanomedicine ◽  
2019 ◽  
Vol 14 (18) ◽  
pp. 2461-2479
Author(s):  
Nayra M Kamel ◽  
Maged W Helmy ◽  
Magda W Samaha ◽  
Doaa Ragab ◽  
Ahmed O Elzoghby

Aim: Multicompartmental lipid–protein nanohybrids (MLPNs) were developed for combined delivery of the anticancer drugs tretinoin (TRE) and genistein (GEN) as synergistic therapy of lung cancer. Materials & methods: The GEN-loaded lipid core was first prepared and then coated with TRE-loaded zein shell via nanoprecipitation. Results: TRE/GEN-MLPNs demonstrated a size of 154.5 nm. In situ ion pair formation between anionic TRE and the cationic stearyl amine improved the drug encapsulation with enhanced stability of MLPNs. TRE/GEN-coloaded MLPNs were more cytotoxic against A549 cancer cells compared with combined free GEN/TRE. In vivo, lung cancer bearing mice treated with TRE/GEN-MLPNs displayed higher apoptotic caspase activation compared with mice-treated free combined GEN/TRE. Conclusion: TRE/GEN-MLPNs might serve as a promising parenteral nanovehicles for lung cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document