lung cancer therapy
Recently Published Documents


TOTAL DOCUMENTS

407
(FIVE YEARS 150)

H-INDEX

33
(FIVE YEARS 8)

2022 ◽  
Vol 16 ◽  
pp. 101309
Author(s):  
Xiao-Hong Chen ◽  
Ruo Chen ◽  
Ming-Yan Shi ◽  
Ruo-Fei Tian ◽  
Hai Zhang ◽  
...  

2022 ◽  
Author(s):  
Demet Taşdemir ◽  
Ayşegül Karaküçük-İyidoğan ◽  
Yasemin Saygideger ◽  
EMİNE Elçin Emre ◽  
Tuğba Taşkın-Tok ◽  
...  

Hypoxia-inducible factors (HIF), one of the targeted treatment strategies with a rising promise in lung cancer, are known to play a role in tumor growth and other oncogenic properties in...


Author(s):  
Hui Liu ◽  
Chunlei Guo ◽  
Yuhong Shang ◽  
Lin Zeng ◽  
Haixue Jia ◽  
...  

In recent years, supramolecular nanoparticles consisting of peptides and drugs have been regarded as useful drug delivery systems for tumor therapy. Pemetrexed (PEM) is a multitarget drug that is effective for many cancers, such as non-small cell lung cancer. Here, RGD-conjugated molecular nanoparticles mainly composed of an anticancer drug of PEM (PEM-FFRGD) were prepared to deliver PEM to tumors. The peptide could self-assemble into a nanoparticle structure with diameter of about 20 nm. Moreover, the nanoparticle showed favorable solubility and biocompatibility compared with those of PEM, and the MTT test on A549 and LLC cells showed that the PEM-FFRGD nanoparticles had stronger cytotoxic activity than PEM alone. Most importantly, the nanoparticle could promote tumor apoptosis and decrease mitochondrial energy metabolism in tumors. In vivo studies indicated that PEM-FFRGD nanoparticles had enhanced antitumor efficacy in LLC tumor-bearing mice compared to that of PEM. Our observations suggested that PEM-FFRGD nanoparticles have great practical potential for application in lung cancer therapy.


2021 ◽  
Vol 17 (12) ◽  
pp. 2374-2381
Author(s):  
Haitao Miao ◽  
Xiaoxiao Zhu ◽  
Fei Yuan ◽  
Qing Su ◽  
Pei Li ◽  
...  

Lung cancer, as one of the most fatal cancers around the world, is responsible for the death of millions every year. Among various types of lung cancers, the ones overexpressing CD44 is usually associated higher cell proliferation with poorer prognosis. Therefore, finding a way to effectively treat CD44 positive lung cancer is urgently needed. Here in this study, negatively charged ultrasmall prussian blue nanoparticles (UPBNPs) was firstly synthesized and adsorbed to polyethyleneimine (PEI) together with glucose oxidase (Gox). Afterwards, the PEI was further complexed with hyaluronic acid (HA) to give a cascade reaction platform (HP/UPB-Gox) for CD44 positive lung cancer therapy. The HP/UPB-Gox with HA shell was able to positively target CD44 overexpressed A549 cells. Upon arriving at the tumor tissue, the Gox catalyzed the glucose of tumor to create H2O2, which further served as the substrate of UPBNPs, a peroxidase mimic, to finally give highly toxic hydroxyl radical (OH) for cancer therapy. Therefore, the cascade reaction formed between UPBNPs and Gox was expected to realize effective treatment on CD44 overexpressed lung cancer.


2021 ◽  
Vol 11 (12) ◽  
pp. 2395-2400
Author(s):  
Yue-Jiao Cao ◽  
Zhi-Peng Li ◽  
Nan Zhou ◽  
Jia-Ping Liu

The cis-platinum (CDDP) is a first line chemotherapeutics drugs to combat lung cancer. However, its efficacy is largely limited due to the off-target delivery and multidrug resistance (MDR) upon in vivo applications. In order to solve this problem, here in our study, we prepared ultra-small lipidpolymer nanoparticles (USLPNPs) using one-pot method and to load CDDP (USLPNPs-CDDP) for the effective lung cancer therapy. Our results showed that the size of USLPNPs-CDDP was 20 nm and the stability of this platform was high. The sustained drug release afforded the long-lasting administration of CDDP to treat cancers. Most importantly, the USLPNPs-CDDP was able to bypass the CDDP resistance of A549/CDDP cells, which resulted in better anticancer benefits as compared to free CDDP both in vitro and in vivo.


2021 ◽  
Author(s):  
Maria Ghita ◽  
Dana Copot ◽  
Robin De Keyser ◽  
Clara M. Ionescu

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huan Li ◽  
Songpei Li ◽  
Yinshan Lin ◽  
Sheng Chen ◽  
Langyu Yang ◽  
...  

Abstract Background Malignant tumor is usually associated with epigenetic dysregulation, such as overexpression of histone deacetylase (HDAC), thus HDAC has emerged as a therapeutic target for cancer. Histone deacetylase inhibitor has been approved for clinical use to treat hematological cancers. However, the low solubility, short circulation lifetime, and high cytotoxicity partially limited their applications in solid tumor. Methods The upconversion nanoparticles (UC) modified with mesoporous silica (SUC) was used to load an HDACI, suberoylanilide hydroxamic acid (SAHA), and further camouflaged with M1 macrophage-derived exosome membranes (EMS). EMS was characterized in size and compositions. We also analyzed the epigenetic regulation induced by EMS. Furthermore, we evaluate the biodistribution and in vivo tumor inhibition after the systemic administration of EMS. Results This novel style spatiotemporal-resolved drug delivery system, EMS showed a high loading efficiency of SAHA. EMS could be taken up by lung cancer cells and lead to efficient epigenetic inhibition. We found that the integrin α4β1 on M1-EM, was crucial for the homing of EMS to tumor tissues for the first time. In tumor-bearing mice, EMS showed spatiotemporal-resolved properties and facilitated the drug accumulation in the tumors, which induced superior anti-tumor effects. Conclusion This novel style of spatiotemporal-resolved nanoparticles can be used as a theranostic platform for lung cancer therapy. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document