scholarly journals Stability analysis of ferrofluids

2015 ◽  
Vol 1 (1) ◽  
pp. 10-13
Author(s):  
Duda Katharina ◽  
Lüdtke-Buzug Kerstin

AbstractSuperparamagnetic iron oxides (SPIOs) are used as tracer for the new imaging technique Magnetic Particle Imaging. The stability of ferrofluids for medical application has a great importance, in addition to the particle size. The shell material, which protects the iron core prior from agglomeration and sedimentation, can be degraded by various processes. Another important aspect of stability is the constant performance of magnetisation. Therefore, the measurement of the magnetisation of the particles must be controlled in order to ensure the stability of the samples.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dennis Pantke ◽  
Florian Mueller ◽  
Sebastian Reinartz ◽  
Fabian Kiessling ◽  
Volkmar Schulz

AbstractChanges in blood flow velocity play a crucial role during pathogenesis and progression of cardiovascular diseases. Imaging techniques capable of assessing flow velocities are clinically applied but are often not accurate, quantitative, and reliable enough to assess fine changes indicating the early onset of diseases and their conversion into a symptomatic stage. Magnetic particle imaging (MPI) promises to overcome these limitations. Existing MPI-based techniques perform velocity estimation on the reconstructed images, which restricts the measurable velocity range. Therefore, we developed a novel velocity quantification method by adapting the Doppler principle to MPI. Our method exploits the velocity-dependent frequency shift caused by a tracer motion-induced modulation of the emitted signal. The fundamental theory of our method is deduced and validated by simulations and measurements of moving phantoms. Overall, our method enables robust velocity quantification within milliseconds, with high accuracy, no radiation risk, no depth-dependency, and extended range compared to existing MPI-based velocity quantification techniques, highlighting the potential of our method as future medical application.


2020 ◽  
Vol 56 (24) ◽  
pp. 3504-3507 ◽  
Author(s):  
Lucy Gloag ◽  
Milad Mehdipour ◽  
Marina Ulanova ◽  
Kevin Mariandry ◽  
Muhammad Azrhy Nichol ◽  
...  

Zero valent iron core–iron oxide shell nanoparticles coated with a multi-phosphonate brush co-polymer are shown to be small and effective magnetic nanoparticle imaging tracers.


2019 ◽  
Vol 39 (4) ◽  
pp. 453-482 ◽  
Author(s):  
Andrea Andrisani ◽  
Rosa Maria Mininni ◽  
Francesca Mazzia ◽  
Giuseppina Settanni ◽  
Alessandro Iurino ◽  
...  

In this work we propose a novel application of Partial Differential Equations (PDEs) inpainting techniques to two medical contexts. The first one concerning recovering of concentration maps for superparamagnetic nanoparticles, used as tracers in the framework of Magnetic Particle Imaging. The analysis is carried out by two set of simulations, with and without adding a source of noise, to show that the inpainted images preserve the main properties of the original ones. The second medical application is related to recovering data of corneal elevation maps in ophthalmology. A new procedure consisting in applying the PDEs inpainting techniques to the radial curvature image is proposed. The images of the anterior corneal surface are properly recovered to obtain an approximation error of the required precision. We compare inpainting methods based on second, third and fourth-order PDEs with standard approximation and interpolation techniques.


2021 ◽  
Vol 7 (2) ◽  
pp. 319-322
Author(s):  
Norbert Löwa ◽  
Rebecca Hoffmann ◽  
Dirk Gutkelch ◽  
Olaf Kosch ◽  
Silvio Dutz ◽  
...  

Abstract Phantoms are essential tools for the development and characterization of Magnetic Particle Imaging (MPI), an imaging technique that can quantitatively map the spatial distribution of magnetic nanoparticles (MNP). The objective of this study was to develop and validate a modular MPI phantom kit with high versatility for platform-independent quality assurance and the assembling of defined geometries in MPI. It was shown that the developed MPI phantom kit can be used for both application scenario testing and quality assurance in MPI which provides the basis for future reference phantoms to directly compare existing scanners within the MPI community.


2021 ◽  
Author(s):  
Chang Lu ◽  
Linbo Han ◽  
Joanna Wang ◽  
Jiacheng Wan ◽  
Guosheng Song ◽  
...  

Magnetic particle imaging (MPI) has recently emerged as a promising non-invasive imaging technique. Engineering of magnetic nanoparticles (MNPs) is effective ways to enhance MPI sensitivity and spatial resolution.


2018 ◽  
Vol 3 (3) ◽  
pp. 179-192 ◽  
Author(s):  
Anna C. Bakenecker ◽  
Mandy Ahlborg ◽  
Christina Debbeler ◽  
Christian Kaethner ◽  
Thorsten M. Buzug ◽  
...  

AbstractMagnetic particle imaging (MPI) is a new medical imaging technique that enables three-dimensional real-time imaging of a magnetic tracer material. Although it is not yet in clinical use, it is highly promising, especially for vascular and interventional imaging. The advantages of MPI are that no ionizing radiation is necessary, its high sensitivity enables the detection of very small amounts of the tracer material, and its high temporal resolution enables real-time imaging, which makes MPI suitable as an interventional imaging technique. As MPI is a tracer-based imaging technique, functional imaging is possible by attaching specific molecules to the tracer material. In the first part of this article, the basic principle of MPI will be explained and a short overview of the principles of the generation and spatial encoding of the tracer signal will be given. After this, the used tracer materials as well as their behavior in MPI will be introduced. A subsequent presentation of selected scanner topologies will show the current state of research and the limitations researchers are facing on the way from preclinical toward human-sized scanners. Furthermore, it will be briefly shown how to reconstruct an image from the tracer materials’ signal. In the last part, a variety of possible future clinical applications will be presented with an emphasis on vascular imaging, such as the use of MPI during cardiovascular interventions by visualizing the instruments. Investigations will be discussed, which show the feasibility to quantify the degree of stenosis and diagnose strokes and traumatic brain injuries as well as cerebral or gastrointestinal bleeding with MPI. As MPI is not only suitable for vascular medicine but also offers a broad range of other possible applications, a selection of those will be briefly presented at the end of the article.


Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1466 ◽  
Author(s):  
Harald Kratz ◽  
Azadeh Mohtashamdolatshahi ◽  
Dietmar Eberbeck ◽  
Olaf Kosch ◽  
Ralf Hauptmann ◽  
...  

Magnetic particle imaging (MPI) is a new imaging technique that detects the spatial distribution of magnetic nanoparticles (MNP) with the option of high temporal resolution. MPI relies on particular MNP as tracers with tailored characteristics for improvement of sensitivity and image resolution. For this reason, we developed optimized multicore particles (MCP 3) made by coprecipitation via synthesis of green rust and subsequent oxidation to iron oxide cores consisting of a magnetite/maghemite mixed phase. MCP 3 shows high saturation magnetization close to that of bulk maghemite and provides excellent magnetic particle spectroscopy properties which are superior to Resovist® and any other up to now published MPI tracers made by coprecipitation. To evaluate the MPI characteristics of MCP 3 two kinds of tube phantoms were prepared and investigated to assess sensitivity, spatial resolution, artifact severity, and selectivity. Resovist® was used as standard of comparison. For image reconstruction, the regularization factor was optimized, and the resulting images were investigated in terms of quantifying of volumes and iron content. Our results demonstrate the superiority of MCP 3 over Resovist® for all investigated MPI characteristics and suggest that MCP 3 is promising for future experimental in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document