scholarly journals New Tracer for Magnetic Particle Imaging - SPIONs encapsulated in RBCs

2018 ◽  
Vol 4 (1) ◽  
pp. 271-274 ◽  
Author(s):  
Ann-Kathrin Steuer ◽  
Matthias Klinger ◽  
Ralph Pries ◽  
Kerstin Lüdtke-Buzug

AbstractSuperparamagnetic iron oxide nanoparticles, so called SPIONs, are used as tracers in medical imaging, e. g. for magnetic particle imaging (MPI) or magnetic resonance imaging (MRI). Since the half-life time of the SPIONs in the bloodstream is quite short because they are quickly absorbed by the reticuloendothelial system (RES), the particles are introduced into human red blood cells (RBCs) to increase their half-life time in the blood circulation. The hypotonic swelling procedure is used to incorporate the particles into the RBCs. Before the SPIONs are introduced into the RBCs, they are fluorescent labelled. To evaluate the result transmission electron microscopy, magnetic particle spectroscopy and fluorescence microscopy are used. Fluorescein isothiocyanate and rose Bengal were chosen as fluorescent dyes because their biocompatibility is guaranteed. The results suggest that the method hypotonic swelling can be used to successfully introduce the nanoparticles into RBCs and that the magnetic properties of the particles which are necessary for imaging are not influenced.

Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 773
Author(s):  
Xiaojun Chen ◽  
Zhenqi Jiang ◽  
Xiao Han ◽  
Xiaolin Wang ◽  
Xiaoying Tang

Magnetic particle imaging (MPI) is a novel non-invasive molecular imaging technology that images the distribution of superparamagnetic iron oxide nanoparticles (SPIONs). It is not affected by imaging depth, with high sensitivity, high resolution, and no radiation. The MPI reconstruction with high precision and high quality is of enormous practical importance, and many studies have been conducted to improve the reconstruction accuracy and quality. MPI reconstruction based on the system matrix (SM) is an important part of MPI reconstruction. In this review, the principle of MPI, current construction methods of SM and the theory of SM-based MPI are discussed. For SM-based approaches, MPI reconstruction mainly has the following problems: the reconstruction problem is an inverse and ill-posed problem, the complex background signals seriously affect the reconstruction results, the field of view cannot cover the entire object, and the available 3D datasets are of relatively large volume. In this review, we compared and grouped different studies on the above issues, including SM-based MPI reconstruction based on the state-of-the-art Tikhonov regularization, SM-based MPI reconstruction based on the improved methods, SM-based MPI reconstruction methods to subtract the background signal, SM-based MPI reconstruction approaches to expand the spatial coverage, and matrix transformations to accelerate SM-based MPI reconstruction. In addition, the current phantoms and performance indicators used for SM-based reconstruction are listed. Finally, certain research suggestions for MPI reconstruction are proposed, expecting that this review will provide a certain reference for researchers in MPI reconstruction and will promote the future applications of MPI in clinical medicine.


Nanoscale ◽  
2019 ◽  
Vol 11 (16) ◽  
pp. 7771-7780 ◽  
Author(s):  
Eric Teeman ◽  
Carolyn Shasha ◽  
James E. Evans ◽  
Kannan M. Krishnan

An examination of the effects of intracellular environmental conditions on the dynamic magnetic response of superparamagnetic iron oxide nanoparticles.


2021 ◽  
Vol 22 (14) ◽  
pp. 7651
Author(s):  
Caroline Billings ◽  
Mitchell Langley ◽  
Gavin Warrington ◽  
Farzin Mashali ◽  
Jacqueline Anne Johnson

Magnetic nanoparticles (MNPs) have a wide range of applications; an area of particular interest is magnetic particle imaging (MPI). MPI is an imaging modality that utilizes superparamagnetic iron oxide particles (SPIONs) as tracer particles to produce highly sensitive and specific images in a broad range of applications, including cardiovascular, neuroimaging, tumor imaging, magnetic hyperthermia and cellular tracking. While there are hurdles to overcome, including accessibility of products, and an understanding of safety and toxicity profiles, MPI has the potential to revolutionize research and clinical biomedical imaging. This review will explore a brief history of MPI, MNP synthesis methods, current and future applications, and safety concerns associated with this newly emerging imaging modality.


2020 ◽  
Author(s):  
Kierstin P Melo ◽  
Ashley V Makela ◽  
Natasha N Knier ◽  
Amanda M Hamilton ◽  
Paula J Foster

AbstractIntroductionMagnetic particle imaging (MPI) is a new imaging modality that sensitively and specifically detects superparamagnetic iron oxide nanoparticles (SPIONs) within a sample. SPION-based MRI cell tracking has very high sensitivity, but low specificity and quantification of iron labeled cells is difficult. MPI cell tracking could overcome these challenges.MethodsMDM-AB-231BR cells labeled with MPIO, mice were intracardially injected with either 2.5 × 105 or 5.0 × 105 cells. MRI was performed in vivo the same day at 3T using a bSSFP sequence. After mice were imaged ex vivo with MPI. In a second experiment Mice received an intracardiac injection of either 2.5 × 10 5 or 5 × 10 4 MPIO-labeled 231BR cells. In a third experiment, mice were injected with 5 × 10 4 4T1BR cells, labelled with either MPIO or the SPION Vivotrax. MRI and MPI was performed in vivo.ResultsSignal from MPI and signal voids from MRI both showed more iron content in mice receiving an injection of 5.0 × 105 cells than the 2.5 × 105 injection. In the second experiment, Day 0 MRI showed signal voids and MPI signal was detected in all mouse brains. The MPI signal and iron content measured in the brains of mice that were injected with 2.5 × 10 5 cells were approximately four times greater than in brains injected with 5 × 10 4 cells. In the third experiment, in vivo MRI was able to detect signal voids in the brains of mice injected with Vivotrax and MPIO, although voids were fainter in Vivotrax labeled cells. In vivo MPI signal was only detectable in mice injected with MPIO-labeled cells.ConclusionThis is the first example of the use of MPIO for cell tracking with MPI. With an intracardiac cell injection, approximately 15% of the injected cells are expected to arrest in the brain vasculature. For our lowest cell injection of 5.0 × 104 cells this is ∼10000 cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
A. Weber ◽  
T. Knopp

Magnetic particle imaging (MPI) is a tomographic imaging technique that allows the determination of the 3D spatial distribution of superparamagnetic iron oxide nanoparticles. Due to the complex dynamic nature of these nanoparticles, a time-consuming calibration measurement has to be performed prior to image reconstruction. During the calibration a small delta sample filled with the particle suspension is measured at all positions in the field of view where the particle distribution will be reconstructed. Recently, it has been shown that the calibration procedure can be significantly shortened by sampling the field of view only at few randomly chosen positions and applying compressed sensing to reconstruct the full MPI system matrix. The purpose of this work is to reduce the number of necessary calibration scans even further. To this end, we take into account symmetries of the MPI system matrix and combine this knowledge with the compressed sensing method. Experiments on 2D MPI data show that the combination of symmetry and compressed sensing allows reducing the number of calibration scans compared to the pure compressed sensing approach by a factor of about three.


Nanomedicine ◽  
2020 ◽  
Vol 15 (8) ◽  
pp. 739-753
Author(s):  
Antonella Antonelli ◽  
Patryk Szwargulski ◽  
Emanuele-Salvatore Scarpa ◽  
Florian Thieben ◽  
Grüttner Cordula ◽  
...  

Aim: Magnetic particle imaging (MPI) is highly promising for biomedical applications, but optimal tracers for MPI, namely superparamagnetic iron oxide-based contrast agents, are still lacking. Materials & methods: The encapsulation of commercially available nanoparticles, specifically synomag®-D and perimag®, into human red blood cells (RBCs) was performed by a hypotonic dialysis and isotonic resealing procedure. The amounts of superparamagnetic iron oxide incorporated into RBCs were determined by Fe quantification using nuclear magnetic resonance and magnetic particle spectroscopy. Results: Perimag-COOH nanoparticles were identified as the best nanomaterial for encapsulation in RBCs. Perimag-COOH-loaded RBCs proved to be viable cells showing a good magnetic particle spectroscopy performance, while the magnetic signal of synomag-D-COOH-loaded RBCs dropped sharply. Conclusion: Perimag-COOH-loaded RBCs could be a potential tool for MPI diagnostic applications.


2020 ◽  
Author(s):  
Jaechan Jeong ◽  
Jinsun Kim ◽  
Beomsu Seo ◽  
Hans Krause ◽  
Hyobong Hong

Abstract We present a magnetic particle imaging (MPI) device using a Halbach cuboid magnet and frequency mixing magnetic detection (FMMD) technology. A Field Free Line was formed in the center of a two-piece Halbach cuboid. Then, the cuboid was moved in the sample volume in a T-shaped and circular shape. The sample was exposed to a magnetic excitation field of two different frequencies. Due to the nonlinearity of the superparamagnetic iron oxide nanoparticles (SPIONs), harmonic frequencies and intermodulation products of the excitation frequencies are generated. This characteristic response signal from the particles was acquired by a coil system and demodulated by a FMMD electronics. Images were created by a backprojection method based on Radon and inverse Radon transformation. Using the Halbach cuboid, we were able to generate a stronger magnetic field compared to the previously reported equipment using large permanent magnets.. The results of the experiment showed that the combination of the Halbach cuboid and FMMD can acquire images similar to those of other existing MPI systems, suggesting that it is a method that has advantages in manufacturing and operation of MPI.


Sign in / Sign up

Export Citation Format

Share Document