scholarly journals Evaluation of the Impact of Static Interference on an Empirical Data Based Static Magnetic Localization Setup for Capsule Endoscopy

2020 ◽  
Vol 6 (3) ◽  
pp. 66-69
Author(s):  
Samuel Zeising ◽  
Daisuke Anzai ◽  
Angelika Thalmayer ◽  
Georg Fischer ◽  
Jens Kirchner

AbstractIn this paper, the impact of interference due to the geomagnetic field on a static magnetic localization setup for capsule endoscopy, which is suitable for a wearable application, was investigated. For this purpose, a study was carried out in which the average abdomen size of 15 subjects was evaluated. With the determined geometry values, a setup consisting of three elliptical sensor rings was modeled. Simulations were performed, where the magnetic flux density was evaluated at the sensors by using different-sized magnets. The measured values were compared with each other and the geomagnetic flux density. The results revealed that the measured values were for all evaluated magnet sizes of the order of the geomagnetic flux density, which is problematic since the calibration of sensors is no longer valid if the orientation of the wearable sensor array is changed. However, it is suggested that a differential measurement is suitable for the proposed system and could reduce static interference caused by the geomagnetic field.

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5304
Author(s):  
Ce Liang ◽  
Yanchi Zhang ◽  
Zhonggang Li ◽  
Feng Yuan ◽  
Guang Yang ◽  
...  

As an auxiliary function of the wireless power transfer (WPT) system, coil positioning can solve the power and efficiency degradation during power transmission caused by misalignment of the magnetic coupler. In this paper, a Hall sensor array is used to measure the change of magnetic flux density. By comparing the multisensor data fusion results with the preset data obtained from the coil alignment, the real-time accurate positioning of the receiving coil can be realized. Firstly, the positioning model of the receiving coil is built and the variation of magnetic flux density with the coil misalignment is analyzed. Secondly, the arrangement of the Planar 8-direction symmetric sensor array and the positioning algorithm based on data fusion of magnetic flux density variations are proposed. In order to avoid coil positioning misalignment caused by the unstable magnetic field distribution which is actually affected by the change of mutual inductance during automatic guided vehicle (AGV) alignment, the constant current strategy of primary and secondary sides is proposed. Finally, the coil positioning experimental platform is built. The experimental results show that the coil positioning method proposed in this paper has high accuracy, and the positioning error is within 4 cm.


2018 ◽  
Vol 225 ◽  
pp. 01017 ◽  
Author(s):  
Mohd Fakhizan Romlie ◽  
Kevin Lau ◽  
Mohd Zaifulrizal Zainol ◽  
Mohd Faris Abdullah ◽  
Ramani Kannan

The objective of this paper is to investigate the impact of the spiral coil shape of inductive coupled power transfer on its performance. The coil shapes evaluated are: circular, square and pentagon spiral shapes. The coils are modelled in Ansoft Maxwell software. Simulations are carried out to determine the mutual inductance, coupling coefficient and magnetic flux density. The performance in term of magnetic flux density, mutual inductance and coupling coefficient of the three coils shapes are compared. Of the three shapes, the pentagon is shown to have the best performance in term of its mutual inductance, coupling coefficient and magnetic flux density.


2018 ◽  
Vol 97 (2) ◽  
pp. 132-137
Author(s):  
O. A. Grigoriev ◽  
Yu. D. Gubernskiy ◽  
V. A. Alekseeva ◽  
A. S. Prokofyeva ◽  
Mikhail E. Goshin

The article gives the review of criteria for the assessment of an electromagnetic situation near power lines. Settlement modeling has been executed and the actual data is characterizing a condition of the electric and magnetic field in the territory near power lines of 500 kV and 220 kV. The research of the impact of the power-frequency magnetic field from power lines in the apartments on the example of the building under construction located at distance of 60 m from the power line of 500 kV is reported. Values of the magnetic flux density at the borders of sanitary-protective zones of power lines were shown to meet Russian sanitary standards. At the same time outside this zone to the adjacent residential areas, there was fixed the excess in the performance of the magnetic flux density according to the standards recommended by the World Health Organization (WHO). The measurement of the magnetic flux density on different floors of the building under construction has shown that the maxima, recognized at floors 4 and 5 (0.3 mT) are on the border of the range recommended by the WHO; in case of the recalculation of these values on a maximum load of the line an obvious excess of the indices recommended by the WHO is observed. Thus, the area of the residential development in modern conditions may actually be located in the strip residential areas with uncertain criteria of the safety assessment, respectively, the population living in such conditions, is a potential contingent for epidemiological surveys on the program of the international electromagnetic WHO project.


Author(s):  
Xiaoyan Wang ◽  
Zhiguang Cheng ◽  
Li Lin ◽  
Jianmin Wang

Purpose – The purpose of this paper is to present a simple method to analyze the iron loss in the laminated core of power and distribution transformers. Design/methodology/approach – This paper presents a practical method to calculate the no-load loss in the transformer cores. Considering the non-uniformity of the magnetic flux density in the corner areas of the Epstein frames will affect the measurement precision of the Wt-B curves then further affect the core loss calculation in FEM, a dual-Epstein frame method is used to measure the Wt-B curves with the Epstein sample stripes cutting by different angles to the rolling direction. A 2D FEM that considers the type of joints of the core and eddy current effect in the laminations is used to analyze the core loss with multi-angle Wt-B curves. Findings – The impact of lamination thickness, size of gaps and type of joint of the core are considered. Considering the no-load testing conditions, harmonics in the exciting currents are taken into account. Originality/value – Harmonic wave of magnetic flux density in the transformer core is calculated and the core loss in the joint region is calculated by the loss curve measured with dual-Epstein frame. It makes the calculation result of transformer core loss more exactly.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Konstantinos N. Gyftakis ◽  
Joya Kappatou

The impact of the rotor slot number selection on the induction motors is investigated. Firstly, analytical equations will reveal the spatial harmonic index of the air gap magnetic flux density, connected to the geometrical features and the saturation of the induction motor. Then, six motors with different rotor slot numbers are simulated and studied with FEM. The stator is identical in all motors. The motors are examined under time-harmonic analysis at starting and at 1440 rpm. Their electromagnetic characteristics, such as electromagnetic torque, stator current, and magnetic flux density, are extracted and compared to each other. The analysis will reveal that the proper rotor slot number selection has a strong impact on the induction motor performance.


Sign in / Sign up

Export Citation Format

Share Document