Hydrotalcite Anchored Ruthenium Catalyst for CO2 Hydrogenation Reaction

2018 ◽  
Vol 16 (1) ◽  
pp. 853-863
Author(s):  
Vivek Srivastava

AbstractWe developed a series of new organic-inorganic hybrid hydrotalcite functionalized Ru catalytic systems. All the developed materials have been studied by FTIR, N2 physisorption, ICP-OES, XPS, NMR (1H, 13C, 29Si) and TEM analysis were performed to know the physiochemical behavior and structural morphology of functionalized hydrotalcite materials. XPS results strongly suggest that it involves the formation of N-Ru coordination bonds. We applied these well analyzed materials for CO2 hydrogenation reaction as catalyst (with and without ionic liquid medium). We found that Ru metal containing functionalized hydrotalcite materials were highly active and stable (in terms of catalyst leaching and recycling). The heterogeneous catalyst can be easily recovered and reused 8 times without significant loss of catalytic activity and selectivity, which is a better green alternative for practical applications.

2019 ◽  
Vol 16 (5) ◽  
pp. 396-408
Author(s):  
Vivek Srivastava

We developed a series of new hydrotalcite functionalized Ru catalytic system to synthesize formic acid via CO2 hydrogenation reaction. Advance analytical procedures like FTIR, N2 physisorption, ICP-OES, XPS, and TEM analysis were applied to understand the physiochemical nature of functionalized hydrotalcite materials. This well-analyzed system was used as catalysts for CO2 hydrogenation reaction (with and without ionic liquid medium). Ru metal containing functionalized hydrotalcite materials were found highly active catalysts for formic acid synthesis via hydrogenation reaction. The concern of catalyst stability was studied via catalysts leaching and recycling experiments. We recycled the ionic liquid mediated functionalized hydrotalcite catalytic system up to 8 runs without any significant loss of catalytic activity. Surprisingly, no sign of catalyst leaching was recorded during the catalyst recycling experiment.


2021 ◽  
Vol 18 ◽  
Author(s):  
Vivek Srivastava

: The catalytic display of supported heterogeneous catalysts is essentially reliant on their constitutive elements including active species and supports. Accordingly, the scheme and development of active catalysts with synergistically enhanced outcomes between active sites and supports are of high importance. A simple NaBH4 reduction method was used to synthesize cylindrical amine-functionalized silica nanotubes supported Ru catalyst (ASNT@Ru catalyst) including amine functionality. The physicochemical properties of the material were analyzed by various analytical methods such as SEM-TEM analysis, N2 physisorption, ICP-OES, XPS, etc, and all the data were found in good agreement with each other. Amine-free SNT support using the calcination process was also synthesized to examine the effect of amine in ASNT support on the uniform Ru dispersion. Taking the advantages of the fundamental physical and chemical properties of ASNT support and well-distributed Ru NPs, the ASNT@Ru catalyst was utilized for CO2 hydrogenation reaction and gave excellent catalytic activity/ stability in terms of a good quantity of the formic. 5 times catalysts recycling were recorded, and formic acid was obtained in good quantity.


Author(s):  
Mohsen Nikoorazm ◽  
Maryam Khanmoradi ◽  
Masoumeh Sayadian

Introduction:: MCM-41 was synthesized using the sol-gel method. Then two new transition metal complexes of Nickel (II) and Vanadium (IV), were synthesized by immobilization of adenine (6-aminopurine) into MCM-41 mesoporous. The compounds have been characterized by XRD, TGA, SEM, AAS and FT-IR spectral studies. Using these catalysts provided an efficient and enantioselective procedure for oxidation of sulfides to sulfoxides and oxidative coupling of thiols to their corresponding disulfides using hydrogen peroxide at room temperature. Materials and Methods:: To a solution of sulfide or thiol (1 mmol) and H2O2 (5 mmol), a determined amount of the catalyst was added. The reaction mixture was stirred at room temperature for the specific time under solvent free conditions. The progress of the reaction was monitored by TLC using n-hexane: acetone (8:2). Afterwards, the catalyst was removed from the reaction mixture by centrifugation and, then, washed with dichloromethane in order to give the pure products. Results:: All the products were obtained in excellent yields and short reaction times indicating the high activity of the synthesized catalysts. Besides, the catalysts can be recovered and reused for several runs without significant loss in their catalytic activity. Conclusion:: These catalytic systems furnish the products very quickly with excellent yields and VO-6AP-MCM-41 shows high catalytic activity compared to Ni-6AP-MCM-41.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 452
Author(s):  
Michalis Konsolakis ◽  
Maria Lykaki

The rational design and fabrication of highly-active and cost-efficient catalytic materials constitutes the main research pillar in catalysis field. In this context, the fine-tuning of size and shape at the nanometer scale can exert an intense impact not only on the inherent reactivity of catalyst’s counterparts but also on their interfacial interactions; it can also opening up new horizons for the development of highly active and robust materials. The present critical review, focusing mainly on our recent advances on the topic, aims to highlight the pivotal role of shape engineering in catalysis, exemplified by noble metal-free, CeO2-based transition metal catalysts (TMs/CeO2). The underlying mechanism of facet-dependent reactivity is initially discussed. The main implications of ceria nanoparticles’ shape engineering (rods, cubes, and polyhedra) in catalysis are next discussed, on the ground of some of the most pertinent heterogeneous reactions, such as CO2 hydrogenation, CO oxidation, and N2O decomposition. It is clearly revealed that shape functionalization can remarkably affect the intrinsic features and in turn the reactivity of ceria nanoparticles. More importantly, by combining ceria nanoparticles (CeO2 NPs) of specific architecture with various transition metals (e.g., Cu, Fe, Co, and Ni) remarkably active multifunctional composites can be obtained due mainly to the synergistic metalceria interactions. From the practical point of view, novel catalyst formulations with similar or even superior reactivity to that of noble metals can be obtained by co-adjusting the shape and composition of mixed oxides, such as Cu/ceria nanorods for CO oxidation and Ni/ceria nanorods for CO2 hydrogenation. The conclusions derived could provide the design principles of earth-abundant metal oxide catalysts for various real-life environmental and energy applications.


2021 ◽  
Vol 14 (2) ◽  
pp. 102951
Author(s):  
Nagaraju Pasupulety ◽  
Abdurahim A. Al-Zahrani ◽  
Muhammad A. Daous ◽  
Seetharamulu Podila ◽  
Hafedh Driss

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yang Xia ◽  
Xunhua Zhao ◽  
Chuan Xia ◽  
Zhen-Yu Wu ◽  
Peng Zhu ◽  
...  

AbstractOxygen reduction reaction towards hydrogen peroxide (H2O2) provides a green alternative route for H2O2 production, but it lacks efficient catalysts to achieve high selectivity and activity simultaneously under industrial-relevant production rates. Here we report a boron-doped carbon (B-C) catalyst which can overcome this activity-selectivity dilemma. Compared to the state-of-the-art oxidized carbon catalyst, B-C catalyst presents enhanced activity (saving more than 210 mV overpotential) under industrial-relevant currents (up to 300 mA cm−2) while maintaining high H2O2 selectivity (85–90%). Density-functional theory calculations reveal that the boron dopant site is responsible for high H2O2 activity and selectivity due to low thermodynamic and kinetic barriers. Employed in our porous solid electrolyte reactor, the B-C catalyst demonstrates a direct and continuous generation of pure H2O2 solutions with high selectivity (up to 95%) and high H2O2 partial currents (up to ~400 mA cm−2), illustrating the catalyst’s great potential for practical applications in the future.


Sign in / Sign up

Export Citation Format

Share Document