scholarly journals Ras Transformation Overrides a Proliferation Defect Induced by Tpm3.1 Knockout

2015 ◽  
Vol 20 (4) ◽  
Author(s):  
Jason D. Coombes ◽  
Galina Schevzov ◽  
Chin-Yi Kan ◽  
Carlotta Petti ◽  
Michelle F. Maritz ◽  
...  

AbstractExtensive re-organisation of the actin cytoskeleton and changes in the expression of its binding proteins is a characteristic feature of cancer cells. Previously we have shown that the tropomyosin isoform Tpm3.1, an integral component of the actin cytoskeleton in tumor cells, is required for tumor cell survival. Our objective was to determine whether cancer cells devoid of Tpm3.1 would evade the tumorgenic effects induced by H-Ras transformation. The tropomyosin isoform (Tpm) expression profile of a range of cancer cell lines (21) demonstrates that Tpm3.1 is one of the most broadly expressed Tpm isoform. Consequently, the contribution of Tpm3.1 to the transformation process was functionally evaluated. Primary embryonic fibroblasts isolated from wild type (WT) and Tpm3.1 knockout (KO) mice were transduced with retroviral vectors expressing SV40 large T antigen and an oncogenic allele of the H-Ras gene, H-RasV12, to generate immortalized and transformed WT and KO MEFs respectively. We show that Tpm3.1 is required for growth factor-independent proliferation in the SV40 large T antigen immortalized MEFs, but this requirement is overcome by H-Ras transformation. Consistent with those findings, we found that Tpm3.1 was not required for anchorage independent growth or growth of H-Ras-driven tumors in a mouse model. Finally, we show that pERK and Importin 7 protein interactions are significantly decreased in the SV40 large T antigen immortalized KO MEFs but not in the H-Ras transformed KO cells, relative to control MEFs. The data demonstrate that H-Ras transformation overrides a requirement for Tpm3.1 in growth factor-independent proliferation of immortalized MEFs. We propose that in the SV40 large T antigen immortalized MEFs, Tpm3.1 is partly responsible for the efficient interaction between pERK and Imp7 resulting in cell proliferation, but this is overidden by Ras transformation.

1996 ◽  
Vol 16 (3) ◽  
pp. 884-891 ◽  
Author(s):  
G M D'Abaco ◽  
R H Whitehead ◽  
A W Burgess

Colon carcinomas appear to arise from the cumulative effect of mutations to several genes (APC, DCC, p53, ras, hMLH1, and hMSH2). By using novel colonic epithelial cell lines derived from the Immorto mouse, named the YAMC (young adult mouse colon) cell line, and an Immorto-Min mouse hybrid, named the IMCE (Immorto-Min colonic epithelial) cell line, carrying the Apc min mutation, we investigated the effect of an activated v-Ha-ras gene on tumor progression. The YAMC and IMCE cell lines are normal colonic epithelial cell lines which are conditionally immortalized by virtue of expression of a temperature-sensitive simian virus 40 (SV40) large T antigen. Under conditions which permit expression of a functional SV40 large T antigen (33 degrees C plus gamma interferon), neither the YAMC nor the IMCE cell line grows in soft agar or is tumorigenic in nude mice. In vitro, when the SV40 large T antigen is inactivated (39 degrees C without gamma interferon), the cells stop proliferating and die. By infecting the YAMC and IMCE cell lines with a replication-defective psi2-v-Ha-ras virus, we derived cell lines which overexpress the v-Ha-ras gene (YAMC-Ras and IMCE-Ras). In contrast to the parental cell lines, under conditions in which the SV40 large T antigen is inactive, both the YAMC-Ras and IMCE-Ras cell lines continue to proliferate. Initally YAMC-Ras cells do not form tumors; however, tumors are visible after 90 days of incubation. IMCE-Ras cells form colonies in soft agar under both permissive and nonpermissive culture conditions. Furthermore, IMCE-Ras cells form tumors in nude mice within 3 weeks. The phenotype of the IMCE-Ras cell line thus clearly demonstrates that a defective Apc allele and an activated ras gene are sufficient to transform normal colonic epithelial cells and render them tumorigenic.


1995 ◽  
Vol 129 (1) ◽  
pp. 245-254 ◽  
Author(s):  
H A Franch ◽  
J W Shay ◽  
R J Alpern ◽  
P A Preisig

Although renal hypertrophy is often associated with the progressive loss of renal function, the mechanism of hypertrophy is poorly understood. In both primary cultures of rabbit proximal tubules and NRK-52E cells (a renal epithelial cell line), transforming growth factor beta 1 (TGF beta) converted epidermal growth factor (EGF)-induced hyperplasia into hypertrophy. TGF beta did not affect EGF-induced increases in c-fos mRNA abundance or cyclin E protein abundance, but inhibited EGF-induced entry into S, G2, and M phases. EGF alone increased the amount of hyperphosphorylated (inactive) pRB; TGF beta blocked EGF-induced pRB phosphorylation, maintaining pRB in the active form. To determine the importance of active pRB in TGF beta-induced hypertrophy, NRK-52E cells were infected with SV40 large T antigen (which inactivates pRB and related proteins and p53), HPV16 E6 (which degrades p53), HPV16 E7 (which binds and inactivates pRB and related proteins), or both HPV16 E6 and E7. In SV40 large T antigen expressing clones, the magnitude of EGF + TGF beta-induced hypertrophy was inhibited and was inversely related to the magnitude of SV40 large T antigen expression. In the HPV16-infected cells, EGF + TGF beta-induced hypertrophy was inhibited in E7- and E6E7-expressing, but not E6-expressing cells. These results suggest a requirement for active pRB in the development of EGF + TGF beta-induced renal epithelial cell hypertrophy. We suggest a model of renal cell hypertrophy mediated by EGF-induced entry into the cell cycle with TGF beta-induced blockade at G1/S, the latter due to maintained activity of pRB or a related protein.


1993 ◽  
Vol 13 (2) ◽  
pp. 961-969
Author(s):  
M C Gruda ◽  
J M Zabolotny ◽  
J H Xiao ◽  
I Davidson ◽  
J C Alwine

Simian virus 40 (SV40) large T antigen is a potent transcriptional activator of both viral and cellular promoters. Within the SV40 late promoter, a specific upstream element necessary for T-antigen transcriptional activation is the binding site for transcription-enhancing factor 1 (TEF-1). The promoter structure necessary for T-antigen-mediated transcriptional activation appears to be simple. For example, a promoter consisting of upstream TEF-1 binding sites (or other factor-binding sites) and a downstream TATA or initiator element is efficiently activated. It has been demonstrated that transcriptional activation by T antigen does not require direct binding to the DNA; thus, the most direct effect that T antigen could have on these simple promoters would be through protein-protein interactions with either upstream-bound transcription factors, the basal transcription complex, or both. To determine whether such interactions occur, full-length T antigen or segments of it was fused to the glutathione-binding site (GST fusions) or to the Gal4 DNA-binding domain (amino acids 1 to 147) (Gal4 fusions). With the GST fusions, it was found that TEF-1 and the TATA-binding protein (TBP) bound different regions of T antigen. A GST fusion containing amino acids 5 to 172 (region T1) efficiently bound TBP. TEF-1 bound neither region T1 nor a region between amino acids 168 and 373 (region T2); however, it bound efficiently to the combined region (T5) containing amino acids 5 to 383.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 13 (2) ◽  
pp. 961-969 ◽  
Author(s):  
M C Gruda ◽  
J M Zabolotny ◽  
J H Xiao ◽  
I Davidson ◽  
J C Alwine

Simian virus 40 (SV40) large T antigen is a potent transcriptional activator of both viral and cellular promoters. Within the SV40 late promoter, a specific upstream element necessary for T-antigen transcriptional activation is the binding site for transcription-enhancing factor 1 (TEF-1). The promoter structure necessary for T-antigen-mediated transcriptional activation appears to be simple. For example, a promoter consisting of upstream TEF-1 binding sites (or other factor-binding sites) and a downstream TATA or initiator element is efficiently activated. It has been demonstrated that transcriptional activation by T antigen does not require direct binding to the DNA; thus, the most direct effect that T antigen could have on these simple promoters would be through protein-protein interactions with either upstream-bound transcription factors, the basal transcription complex, or both. To determine whether such interactions occur, full-length T antigen or segments of it was fused to the glutathione-binding site (GST fusions) or to the Gal4 DNA-binding domain (amino acids 1 to 147) (Gal4 fusions). With the GST fusions, it was found that TEF-1 and the TATA-binding protein (TBP) bound different regions of T antigen. A GST fusion containing amino acids 5 to 172 (region T1) efficiently bound TBP. TEF-1 bound neither region T1 nor a region between amino acids 168 and 373 (region T2); however, it bound efficiently to the combined region (T5) containing amino acids 5 to 383.(ABSTRACT TRUNCATED AT 250 WORDS)


2008 ◽  
Vol 68 (4) ◽  
pp. 1022-1029 ◽  
Author(s):  
Maurizio Bocchetta ◽  
Sandra Eliasz ◽  
Melissa Arakelian De Marco ◽  
Jennifer Rudzinski ◽  
Lei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document