scholarly journals Special Input Devices Integration to LIRKIS CAVE

2018 ◽  
Vol 8 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Marián Hudák ◽  
Štefan Korečko ◽  
Branislav Sobota

Abstract LIRKIS CAVE is a unique immersive virtual reality installation with a compact cylinder-based construction and a high-quality stereoscopic video output rendered on twenty 55” Full HD LCD panels. While the video output of the CAVE provides a high level of immersion to a virtual world, its original implementation of peripherals support had a negative impact because of a limited number of supported devices and certain performance issues. In this paper we describe a new, distributed, peripheral devices support implementation for the LIRKIS CAVE, which solves the performance issues and allows for ease of integration of new input devices into the CAVE. We also present a successful integration of a special input device, the Myo armband,which allows a natural and unobtrusive gesture-based control of virtual environments. The integration includes a newly developed control and monitoring application for the Myo, called MLCCS, which utilization is not limited to CAVE systems or virtual reality applications.

2020 ◽  
Vol 11 (1) ◽  
pp. 99-106
Author(s):  
Marián Hudák ◽  
Štefan Korečko ◽  
Branislav Sobota

AbstractRecent advances in the field of web technologies, including the increasing support of virtual reality hardware, have allowed for shared virtual environments, reachable by just entering a URL in a browser. One contemporary solution that provides such a shared virtual reality is LIRKIS Global Collaborative Virtual Environments (LIRKIS G-CVE). It is a web-based software system, built on top of the A-Frame and Networked-Aframe frameworks. This paper describes LIRKIS G-CVE and introduces its two original components. The first one is the Smart-Client Interface, which turns smart devices, such as smartphones and tablets, into input devices. The advantage of this component over the standard way of user input is demonstrated by a series of experiments. The second component is the Enhanced Client Access layer, which provides access to positions and orientations of clients that share a virtual environment. The layer also stores a history of connected clients and provides limited control over the clients. The paper also outlines an ongoing experiment aimed at an evaluation of LIRKIS G-CVE in the area of virtual prototype testing.


2020 ◽  
Vol 6 (3) ◽  
pp. 127-130
Author(s):  
Max B. Schäfer ◽  
Kent W. Stewart ◽  
Nico Lösch ◽  
Peter P. Pott

AbstractAccess to systems for robot-assisted surgery is limited due to high costs. To enable widespread use, numerous issues have to be addressed to improve and/or simplify their components. Current systems commonly use universal linkage-based input devices, and only a few applicationoriented and specialized designs are used. A versatile virtual reality controller is proposed as an alternative input device for the control of a seven degree of freedom articulated robotic arm. The real-time capabilities of the setup, replicating a system for robot-assisted teleoperated surgery, are investigated to assess suitability. Image-based assessment showed a considerable system latency of 81.7 ± 27.7 ms. However, due to its versatility, the virtual reality controller is a promising alternative to current input devices for research around medical telemanipulation systems.


Author(s):  
Stefan Bittmann

Virtual reality (VR) is the term used to describe representation and perception in a computer-generated, virtual environment. The term was coined by author Damien Broderick in his 1982 novel “The Judas Mandala". The term "Mixed Reality" describes the mixing of virtual reality with pure reality. The term "hyper-reality" is also used. Immersion plays a major role here. Immersion describes the embedding of the user in the virtual world. A virtual world is considered plausible if the interaction is logical in itself. This interactivity creates the illusion that what seems to be happening is actually happening. A common problem with VR is "motion sickness." To create a sense of immersion, special output devices are needed to display virtual worlds. Here, "head-mounted displays", CAVE and shutter glasses are mainly used. Input devices are needed for interaction: 3D mouse, data glove, flystick as well as the omnidirectional treadmill, with which walking in virtual space is controlled by real walking movements, play a role here.


Author(s):  
Florian Hruby ◽  
Irma Castellanos ◽  
Rainer Ressl

Abstract Scale has been a defining criterion of mapmaking for centuries. However, this criterion is fundamentally questioned by highly immersive virtual reality (VR) systems able to represent geographic environments at a high level of detail and, thus, providing the user with a feeling of being present in VR space. In this paper, we will use the concept of scale as a vehicle for discussing some of the main differences between immersive VR and non-immersive geovisualization products. Based on a short review of diverging meanings of scale we will propose possible approaches to the issue of both spatial and temporal scale in immersive VR. Our considerations shall encourage a more detailed treatment of the specific characteristics of immersive geovisualization to facilitate deeper conceptual integration of immersive and non-immersive visualization in the realm of cartography.


2020 ◽  
Vol 4 (4) ◽  
pp. 79
Author(s):  
Julian Kreimeier ◽  
Timo Götzelmann

Although most readers associate the term virtual reality (VR) with visually appealing entertainment content, this technology also promises to be helpful to disadvantaged people like blind or visually impaired people. While overcoming physical objects’ and spaces’ limitations, virtual objects and environments that can be spatially explored have a particular benefit. To give readers a complete, clear and concise overview of current and past publications on touchable and walkable audio supplemented VR applications for blind and visually impaired users, this survey paper presents a high-level taxonomy to cluster the work done up to now from the perspective of technology, interaction and application. In this respect, we introduced a classification into small-, medium- and large-scale virtual environments to cluster and characterize related work. Our comprehensive table shows that especially grounded force feedback devices for haptic feedback (‘small scale’) were strongly researched in different applications scenarios and mainly from an exocentric perspective, but there are also increasingly physically (‘medium scale’) or avatar-walkable (‘large scale’) egocentric audio-haptic virtual environments. In this respect, novel and widespread interfaces such as smartphones or nowadays consumer grade VR components represent a promising potential for further improvements. Our survey paper provides a database on related work to foster the creation process of new ideas and approaches for both technical and methodological aspects.


2007 ◽  
Vol 16 (6) ◽  
pp. 623-642 ◽  
Author(s):  
Marc Cavazza ◽  
Jean-Luc Lugrin ◽  
Marc Buehner

Causality is an important aspect of how we construct reality. Yet, while many psychological phenomena have been studied in their relation to virtual reality (VR), very little work has been dedicated specifically to causal perception, despite its potential relevance for user interaction and presence. In this paper, we describe the development of a virtual environment supporting experiments with causal perception. The system, inspired from psychological data, operates by intercepting events in the virtual world, so as to create artificial co-occurrences between events and their subsequent effects. After recognizing high-level events and formalizing them with a symbolic representation inspired from robotics planning, it modifies the events' effects using knowledge-based operators. The re-activation of the modified events creates co-occurrences inducing causal impressions in the user. We conducted experiments with fifty-three subjects who had to interact with virtual world objects and were presented with alternative consequences for their actions, generated by the system using various levels of plausibility. At the same time, these subjects had to answer ten items from the Presence Questionnaire corresponding mainly to control and realism factors: causal perception appears to have a positive impact on these items. The implications of this work are twofold: first, causal perception can provide an interesting experimental setting for some presence determinants, and second, the elicitation of causal impressions can become part of VR technologies to provide new forms of VR experiences.


2000 ◽  
Vol 9 (5) ◽  
pp. 486-496 ◽  
Author(s):  
A. C. Boud ◽  
C. Baber ◽  
S. J. Steiner

This paper reports on an investigation into the proposed usability of virtual reality for a manufacturing application such as the assembly of a number of component parts into a final product. Before the assembly task itself is considered, the investigation explores the use of VR for the training of human assembly operators and compares the findings to conventionally adopted techniques for parts assembly. The investigation highlighted several limitations of using VR technology. Most significant was the lack of haptic feedback provided by current input devices for virtual environments. To address this, an instrumented object (IO) was employed that enabled the user to pick up and manipulate the IO as the representation of a component from a product to be assembled. The reported findings indicate that object manipulation times are superior when IOs are employed as the interaction device, and that IO devices could therefore be adopted in VEs to provide haptic feedback for diverse applications and, in particular, for assembly task planning.


2021 ◽  
Vol 2 ◽  
Author(s):  
Joakim Vindenes ◽  
Barbara Wasson

Virtual Reality (VR) is a remarkably flexible technology for interventions as it allows the construction of virtual worlds with ontologies radically different from the real world. By embodying users in avatars situated in these virtual environments, researchers can effectively intervene and instill positive change in the form of therapy or education, as well as affect a variety of cognitive changes. Due to the capabilities of VR to mediate both the environments in which we are immersed, as well as our embodied, situated relation toward those environments, VR has become a powerful technology for “changing the self.” As the virtually mediated experience is what renders these interventions effective, frameworks are needed for describing and analyzing the mediations brought by various virtual world designs. As a step toward a broader understanding of how VR mediates experience, we propose a post-phenomenological framework for describing VR mediation. Postphenomenology is a philosophy of technology concerned with empirical data that understand technologies as mediators of human-world relationships. By addressing how mediations occur within VR as a user-environment relation and outside VR as a human-world relation, the framework addresses the various constituents of the virtually mediated experience. We demonstrate the framework's capability for describing VR mediations by presenting the results of an analysis of a selected variety of studies that use various user-environment relations to mediate various human-world relations.


2007 ◽  
Vol 16 (3) ◽  
pp. 293-306 ◽  
Author(s):  
Gregorij Kurillo ◽  
Matjaž Mihelj ◽  
Marko Munih ◽  
Tadej Bajd

In this article we present a new isometric input device for multi-fingered grasping in virtual environments. The device was designed to simultaneously assess forces applied by the thumb, index, and middle finger. A mathematical model of grasping, adopted from the analysis of multi-fingered robot hands, was applied to achieve multi-fingered interaction with virtual objects. We used the concept of visual haptic feedback where the user was presented with visual cues to acquire haptic information from the virtual environment. The virtual object corresponded dynamically to the forces and torques applied by the three fingers. The application of the isometric finger device for multi-fingered interaction is demonstrated in four tasks aimed at the rehabilitation of hand function in stroke patients. The tasks include opening the combination lock on a safe, filling and pouring water from a glass, muscle strength training with an elastic torus, and a force tracking task. The training tasks were designed to train patients' grip force coordination and increase muscle strength through repetitive exercises. The presented virtual reality system was evaluated in a group of healthy subjects and two post-stroke patients (early post-stroke and chronic) to obtain overall performance results. The healthy subjects demonstrated consistent performance with the finger device after the first few trials. The two post-stroke patients completed all four tasks, however, with much lower performance scores as compared to healthy subjects. The results of the preliminary assessment suggest that the patients could further improve their performance through virtual reality training.


2006 ◽  
Vol 5 (3) ◽  
pp. 47-52 ◽  
Author(s):  
Marc Erich Latoschik ◽  
Christian Froehlich ◽  
Alexander Wendler

This paper introduces SCIVE, a Simulation Core for Intelligent Virtual Environments. SCIVE provides a Knowledge Representation Layer (KRL) as a central organizing structure. Based on a semantic net, it ties together the data representations of the various simulation modules, e.g., for graphics, physics, audio, haptics or Artificial Intelligence (AI) representations. SCIVE's open architecture allows a seamless integration and modification of these modules. Their data synchronization is widely customizable to support extensibility and maintainability. Synchronization can be controlled through filters which in turn can be instantiated and parametrized by any of the modules, e.g., the AI component can be used to change an object's behavior to be controlled by the physics instead of the interaction- or a keyframe-module. This bidirectional inter- module access is mapped by, and routed through, the KRL which semantically reflects all objects or entities the simulation comprises. Hence, SCIVE allows extensive application design and customization from low-level core logic, module configuration and flow control, to the simulated scene, all on a high-level unified representation layer while it supports well known development paradigms commonly found in Virtual Reality applications


Sign in / Sign up

Export Citation Format

Share Document