scholarly journals Extensions of symmetric operators I: The inner characteristic function case

2015 ◽  
Vol 2 (1) ◽  
Author(s):  
R.T.W. Martin

AbstractGiven a symmetric linear transformation on a Hilbert space, a natural problem to consider is the characterization of its set of symmetric extensions. This problem is equivalent to the study of the partial isometric extensions of a fixed partial isometry. We provide a new function theoretic characterization of the set of all self-adjoint extensions of any symmetric linear transformation B with finite equal indices and inner Livšic characteristic function θ

2013 ◽  
Vol 12 (06) ◽  
pp. 1350014 ◽  
Author(s):  
FEROZ SIDDIQUE ◽  
ASHISH K. SRIVASTAVA

It was proved independently by both Wolfson [An ideal theoretic characterization of the ring of all linear transformations, Amer. J. Math.75 (1953) 358–386] and Zelinsky [Every linear transformation is sum of nonsingular ones, Proc. Amer. Math. Soc.5 (1954) 627–630] that every linear transformation of a vector space V over a division ring D is the sum of two invertible linear transformations except when V is one-dimensional over ℤ2. This was extended by Khurana and Srivastava [Right self-injective rings in which each element is sum of two units, J. Algebra Appl.6(2) (2007) 281–286] who proved that every element of a right self-injective ring R is the sum of two units if and only if R has no factor ring isomorphic to ℤ2. In this paper we prove that if R is a right self-injective ring, then for each element a ∈ R there exists a unit u ∈ R such that both a + u and a - u are units if and only if R has no factor ring isomorphic to ℤ2 or ℤ3.


2019 ◽  
Vol 16 (4) ◽  
pp. 567-587
Author(s):  
Vadim Mogilevskii

Let $A$ be a symmetric linear relation in the Hilbert space $\gH$ with unequal deficiency indices $n_-A <n_+(A)$. A self-adjoint linear relation $\wt A\supset A$ in some Hilbert space $\wt\gH\supset \gH$ is called an (exit space) extension of $A$. We study the compressions $C (\wt A)=P_\gH\wt A\up\gH$ of extensions $\wt A=\wt A^*$. Our main result is a description of compressions $C (\wt A)$ by means of abstract boundary conditions, which are given in terms of a limit value of the Nevanlinna parameter $\tau(\l)$ from the Krein formula for generalized resolvents. We describe also all extensions $\wt A=\wt A^*$ of $A$ with the maximal symmetric compression $C (\wt A)$ and all extensions $\wt A=\wt A^*$ of the second kind in the sense of M.A. Naimark. These results generalize the recent results by A. Dijksma, H. Langer and the author obtained for symmetric operators $A$ with equal deficiency indices $n_+(A)=n_-(A)$.


2021 ◽  
Vol 18 (3) ◽  
Author(s):  
Pietro Aiena ◽  
Fabio Burderi ◽  
Salvatore Triolo

AbstractIn this paper, we study some local spectral properties of operators having form JTJ, where J is a conjugation on a Hilbert space H and $$T\in L(H)$$ T ∈ L ( H ) . We also study the relationship between the quasi-nilpotent part of the adjoint $$T^*$$ T ∗ and the analytic core K(T) in the case of decomposable complex symmetric operators. In the last part we consider Weyl type theorems for triangular operator matrices for which one of the entries has form JTJ, or has form $$JT^*J$$ J T ∗ J . The theory is exemplified in some concrete cases.


Author(s):  
M. Ferrara ◽  
M. Trombetti

AbstractLet G be an abelian group. The aim of this short paper is to describe a way to identify pure subgroups H of G by looking only at how the subgroup lattice $$\mathcal {L}(H)$$ L ( H ) embeds in $$\mathcal {L}(G)$$ L ( G ) . It is worth noticing that all results are carried out in a local nilpotent context for a general definition of purity.


2021 ◽  
Vol 31 (3) ◽  
pp. 033107
Author(s):  
F. R. Iaconis ◽  
A. A. Jiménez Gandica ◽  
J. A. Del Punta ◽  
C. A. Delrieux ◽  
G. Gasaneo

2018 ◽  
Vol 61 (1) ◽  
pp. 166-173
Author(s):  
Cleto B. Miranda-Neto

AbstractIn this note we prove the following surprising characterization: if X ⊂ is an (embedded, non-empty, proper) algebraic variety deûned over a field k of characteristic zero, then X is a hypersurface if and only if the module of logarithmic vector fields of X is a reflexive -module. As a consequence of this result, we derive that if is a free -module, which is shown to be equivalent to the freeness of the t-th exterior power of for some (in fact, any) t ≤ n, then necessarily X is a Saito free divisor.


1986 ◽  
Vol 24 (1-3) ◽  
pp. 53-69 ◽  
Author(s):  
Mladen Bestvina ◽  
Philip Bowers ◽  
Jerzy Mogilsky ◽  
John Walsh
Keyword(s):  

2011 ◽  
Vol 07 (01) ◽  
pp. 173-202
Author(s):  
ROBERT CARLS

In this article, we give a Galois-theoretic characterization of the canonical theta structure. The Galois property of the canonical theta structure translates into certain p-adic theta relations which are satisfied by the canonical theta null point of the canonical lift. As an application, we prove some 2-adic theta identities which describe the set of canonical theta null points of the canonical lifts of ordinary abelian varieties in characteristic 2. The latter theta relations are suitable for explicit canonical lifting. Using the theory of canonical theta null points, we are able to give a theoretical foundation to Mestre's point counting algorithm which is based on the computation of the generalized arithmetic geometric mean sequence.


Sign in / Sign up

Export Citation Format

Share Document