scholarly journals Systems of cubic forms in many variables

2019 ◽  
Vol 2019 (757) ◽  
pp. 309-328
Author(s):  
Simon L. Rydin Myerson

AbstractWe consider a system of R cubic forms in n variables, with integer coefficients, which define a smooth complete intersection in projective space. Provided {n\geq 25R}, we prove an asymptotic formula for the number of integer points in an expanding box at which these forms simultaneously vanish. In particular, we obtain the Hasse principle for systems of cubic forms in {25R} variables, previous work having required that {n\gg R^{2}}. One conjectures that {n\geq 6R+1} should be sufficient. We reduce the problem to an upper bound for the number of solutions to a certain auxiliary inequality. To prove this bound we adapt a method of Davenport.

Author(s):  
Paloma Bengoechea

Abstract Let $F(x, y)$ be a binary form with integer coefficients, degree $n\geq 3$, and irreducible over the rationals. Suppose that only $s + 1$ of the $n + 1$ coefficients of $F$ are nonzero. We show that the Thue inequality $|F(x,y)|\leq m$ has $\ll s m^{2/n}$ solutions provided that the absolute value of the discriminant $D(F)$ of $F$ is large enough. We also give a new upper bound for the number of solutions of $|F(x,y)|\leq m$, with no restriction on the discriminant of $F$ that depends mainly on $s$ and $m$, and slightly on $n$. Our bound becomes independent of $m$ when $m<|D(F)|^{2/(5(n-1))}$, and also independent of $n$ if $|D(F)|$ is large enough.


Author(s):  
Ya-Li Li ◽  
Jie Wu

For any positive integer [Formula: see text], let [Formula: see text] be the number of solutions of the equation [Formula: see text] with integers [Formula: see text], where [Formula: see text] is the integral part of real number [Formula: see text]. Recently, Luca and Ralaivaosaona gave an asymptotic formula for [Formula: see text]. In this paper, we give an asymptotic development of [Formula: see text] for all [Formula: see text]. Moreover, we prove that the number of such partitions is even (respectively, odd) infinitely often.


1954 ◽  
Vol 6 ◽  
pp. 449-454 ◽  
Author(s):  
Emma Lehmer

It has been shown by Dickson (1) that if (i, j)8 is the number of solutions of (mod p),then 64(i,j)8 is expressible for each i,j, as a linear combination with integer coefficients of p, x, y, a, and b where,anda ≡ b ≡ 1 (mod 4),while the sign of y and b depends on the choice of the primitive root g. There are actually four sets of such formulas depending on whether p is of the form 16n + 1 or 16n + 9 and whether 2 is a quartic residue or not.


2002 ◽  
Vol 34 (3) ◽  
pp. 279-283 ◽  
Author(s):  
JÖRG BRÜDERN ◽  
TREVOR D. WOOLEY

This paper concerns systems of r homogeneous diagonal equations of degree k in s variables, with integer coefficients. Subject to a suitable non-singularity condition, it is shown that the expected asymptotic formula holds for the number of such systems inside a box [−P,P]s, provided only that s > (3r+1)2k−2. By way of comparison, classical methods based on the use of Hua's lemma would establish a similar conclusion, provided instead that s > r2k.


2004 ◽  
Vol 4 (3) ◽  
Author(s):  
Markus Kunze ◽  
Rafael Ortega

AbstractWe consider semilinear elliptic problems of the form Δu + g(u) = f(x) with Neumann boundary conditions or Δu+λ1u+g(u) = f(x) with Dirichlet boundary conditions, and we derive conditions on g and f under which an upper bound on the number of solutions can be obtained.


Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn ≤ f (2n). We prove:   (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, then M is computable.


10.37236/415 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Charles Delorme ◽  
Guillermo Pineda-Villavicencio

The Moore bound constitutes both an upper bound on the order of a graph of maximum degree $d$ and diameter $D=k$ and a lower bound on the order of a graph of minimum degree $d$ and odd girth $g=2k+1$. Graphs missing or exceeding the Moore bound by $\epsilon$ are called graphs with defect or excess $\epsilon$, respectively. While Moore graphs (graphs with $\epsilon=0$) and graphs with defect or excess 1 have been characterized almost completely, graphs with defect or excess 2 represent a wide unexplored area. Graphs with defect (excess) 2 satisfy the equation $G_{d,k}(A) = J_n + B$ ($G_{d,k}(A) = J_n - B$), where $A$ denotes the adjacency matrix of the graph in question, $n$ its order, $J_n$ the $n\times n$ matrix whose entries are all 1's, $B$ the adjacency matrix of a union of vertex-disjoint cycles, and $G_{d,k}(x)$ a polynomial with integer coefficients such that the matrix $G_{d,k}(A)$ gives the number of paths of length at most $k$ joining each pair of vertices in the graph. In particular, if $B$ is the adjacency matrix of a cycle of order $n$ we call the corresponding graphs graphs with cyclic defect or excess; these graphs are the subject of our attention in this paper. We prove the non-existence of infinitely many such graphs. As the highlight of the paper we provide the asymptotic upper bound of $O(\frac{64}3d^{3/2})$ for the number of graphs of odd degree $d\ge3$ and cyclic defect or excess. This bound is in fact quite generous, and as a way of illustration, we show the non-existence of some families of graphs of odd degree $d\ge3$ and cyclic defect or excess. Actually, we conjecture that, apart from the Möbius ladder on 8 vertices, no non-trivial graph of any degree $\ge 3$ and cyclic defect or excess exists.


10.37236/1370 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
E. Rodney Canfield ◽  
Sylvie Corteel ◽  
Carla D. Savage

Let ${\bf F}(n)$ be a family of partitions of $n$ and let ${\bf F}(n,d)$ denote the set of partitions in ${\bf F}(n)$ with Durfee square of size $d$. We define the Durfee polynomial of ${\bf F}(n)$ to be the polynomial $P_{{\bf F},n}= \sum |{\bf F}(n,d)|y^d$, where $ 0 \leq d \leq \lfloor \sqrt{n} \rfloor.$ The work in this paper is motivated by empirical evidence which suggests that for several families ${\bf F}$, all roots of the Durfee polynomial are real. Such a result would imply that the corresponding sequence of coefficients $\{|{\bf F}(n,d)|\}$ is log-concave and unimodal and that, over all partitions in ${\bf F}(n)$ for fixed $n$, the average size of the Durfee square, $a_{{\bf F}}(n)$, and the most likely size of the Durfee square, $m_{{\bf F}}(n)$, differ by less than 1. In this paper, we prove results in support of the conjecture that for the family of ordinary partitions, ${\bf P}(n)$, the Durfee polynomial has all roots real. Specifically, we find an asymptotic formula for $|{\bf P}(n,d)|$, deriving in the process a simple upper bound on the number of partitions of $n$ with at most $k$ parts which generalizes the upper bound of Erdös for $|{\bf P}(n)|$. We show that as $n$ tends to infinity, the sequence $\{|{\bf P}(n,d)|\},\ 1 \leq d \leq \sqrt{n},$ is asymptotically normal, unimodal, and log concave; in addition, formulas are found for $a_{{\bf P}}(n)$ and $m_{{\bf P}}(n)$ which differ asymptotically by at most 1. Experimental evidence also suggests that for several families ${\bf F}(n)$ which satisfy a recurrence of a certain form, $m_{{\bf F}}(n)$ grows as $c \sqrt{n}$, for an appropriate constant $c=c_{{\bf F}}$. We prove this under an assumption about the asymptotic form of $|{\bf F}(n,d)|$ and show how to produce, from recurrences for the $|{\bf F}(n,d)|$, analytical expressions for the constants $c_{{\bf F}}$ which agree numerically with the observed values.


Sign in / Sign up

Export Citation Format

Share Document