DFT Study of Anthocyanidin and Anthocyanin Pigments for Dye Sensitized Solar Cells: Electron Injecting from the Excited States and Adsorption onto TiO2 (Anatase) Surface

2018 ◽  
Vol 5 (1-2) ◽  
pp. 29-38 ◽  
Author(s):  
Emildo Marcano

Abstract We explored, the absorption spectra, excited states and electronic injection parameters of anthocyanidin and anthocyanin pigments using the level of theory (TD)CAM-B3LYP/6–31 + G(d,p). For all isolated dyes, the distribution pattern of HOMO and LUMO spread over the whole molecules, which lead an efficient electronic delocalization. The calculated LHEs are all near unity. Methoxy group in Peonidin molecule lead the largest oscillator strength and LHE. The presence of water lead a higher spontaneous electronic inject process, with ΔGinject average of −1.14 eV. The ΔGinject order is Peonidin<Delphinidin<Cyanin<Cyanidin. Similarly, the adsorption energies (Eads) onto anatase surface model were obtained from level of theory GGA(PBE)/DNP. Eads of anthocyanin-(TiO2)30 complex was calculated to be from 17 to 24 eV, indicating both, the strong interactions between the dyes and the anatase (TiO2) surface and stronger electronic coupling strengths of the anthocyanin-(TiO2)30 complex, which corresponded to higher observed η. The HOMO and LUMO shape showed the electrons delocalized predominantly on the anthocyanin structure while, the LUMO + 1 shape is localized into the (TiO2)30 surface. Therefore we expected a electronic injection from HOMO to LUMO + 1 in the anthocyanin-(TiO2)30 adsorption complex, after the light absorption.

2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Emildo Marcano

AbstractWe explored, the absorption spectra, excited states and electronic injection parameters of anthocyanidin and anthocyanin pigments using the level of theory (TD)CAM-B3LYP/6-31+G(d,p). For the most isolated dyes, the distribution pattern of HOMO and LUMO spreads over the whole molecules, which lead an efficient electronic delocalization. The calculated light harvesting efficiencies (LHEs) are all near unity. Methoxy group in peonidin molecule lead the largest oscillator strength and LHE. The presence of water lead a higher spontaneous electronic inject process, with ΔG


2021 ◽  
Vol 22 (2) ◽  
pp. 53
Author(s):  
Matius Nata Pakpahan ◽  
Aldi Hartanto ◽  
Yonatan Davidson Gultom ◽  
Nur Fadhilah ◽  
Doty Dewi Risanti

A SYNERGISTIC ABSORPTION AND PLASMONIC EFFECT OF SiO2@Au@TiO2 IN A TiO2 PHOTOANODE FOR DYE-SENSITIZED SOLAR CELLS. A method for increasing the visible-light harvesting of a TiO2 anatase photoanode in dye-sensitized solar cells by incorporating plasmonic nanostructures was developed. Sidoarjo mud as the SiO2 source was used to successfully synthesized core/multishell SiO2@Au@TiO2, with varying amounts of Au (60, 90, and 120 mL). In addition, the core/multishell fractions in TiO2 paste were varied, i.e., 0.5%, 1%, and 5%. The UV–Vis spectrum shows that a more ripple spectrum at higher wavelengths is obtained with increasing Au content, as suggested by the presence of large Au nanoparticles; however, a similar value of efficiency is observed for all sample variations studied compared to a pure TiO2 photoanode. The incident photon-to-current efficiency reveals that all photoanodes containing the core/multishell SiO2@Au@TiO2 studied show somewhat broader and enhanced spectra for all studied wavelengths compared to the pure TiO2 photoanode, resulting from the synergistic effect between plasmonic nanostructures and the presence of silica that boost the absorption to higher wavelengths.


2017 ◽  
Vol 19 (3) ◽  
pp. 2549-2556 ◽  
Author(s):  
Yang Li ◽  
Junting Wang ◽  
Yi Yuan ◽  
Min Zhang ◽  
Xiandui Dong ◽  
...  

Two perylene dyes characteristic of electron-donors phenanthrocarbazole (PC) and carbazyl functionalized PC are selected to study the complicated dynamics of excited states and charge carriers, which underlie the photovoltaic parameters of dye-sensitized solar cells (DSCs).


2019 ◽  
Vol 23 (04n05) ◽  
pp. 599-610 ◽  
Author(s):  
Siddhartha Kumar ◽  
Whitney Webre ◽  
Jacob Schaffner ◽  
Sheikh M. S. Islam ◽  
Francis D’Souza ◽  
...  

The first example of A2B2 tetrabenzoporphyrin (KW-4) was synthesized, characterized and evaluated as a sensitizer for dye-sensitized solar cells. UV-vis and fluorescence spectroscopy revealed red-shifted and broadened absorption spectra of A2B2 tetrabenzoporphyrin as compared with its A2 dibenzo- and A2B2 dibenzoporphyrin analogues, which is a desired feature of dyes for dye-sensitized solar cells. DFT calculations also indicate favorable electron density distribution on the HOMO and LUMO of KW-4. However, the power conversion efficiency of the solar cell based on tetrabenzoporphyrin KW-4 displayed inferior performance than that of the solar cell based on A2 dibenzoporphyrin KW-2. The lower performance of the KW-4 cell was ascribed to two factors: the low lying LUMO energy level leading to less efficient electron injection and the “flat geometry” of the dye on TiO2surface facilitating charge recombination and decreasing dye loading. The investigation of anchoring group effect suggests that the acrylic acid group is a better anchoring group than pentadienyl carboxylic acid.


1968 ◽  
Vol 46 (8) ◽  
pp. 987-1003 ◽  
Author(s):  
Ch. Jungen ◽  
E. Miescher

Heterogeneous perturbations 2E+ ~ 2Π of largely different magnitudes are observed with high resolution in the vacuum-ultraviolet absorption and in the infrared emission spectrum of the NO molecule. The rotational interactions between 2Σ+ Rydberg states and levels of the B2Π non-Rydberg state are shown to be "configurationally forbidden", but produced by the configuration interaction between the non-Rydberg levels and 2Π Rydberg states. The latter together with the 2Σ+ Rydberg states form p complexes. In this way the interactions display the l uncoupling in the complexes; they can be evaluated theoretically and can be analyzed fully. The cases of the strong interactions D2Σ+(v = 3) ~ B2Π(v = 16)and D2Σ+(v = 5) ~ B2Π(v = 21) and of the weaker D2Σ+(v = 1) ~ B2Π(v = 11), all three observed as perturbations in ε bands crossing 3 bands, are discussed in detail. It is further shown that perturbations between γ bands and β bands as well as perturbations between analogous bands of higher principal quantum number are absent, and thus the assignment of the A2Σ+ and E2Σ+ states to the s Rydberg series is confirmed.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2129
Author(s):  
Diana-Paola Medina ◽  
Javier Fernández-Ariza ◽  
Maxence Urbani ◽  
Frédéric Sauvage ◽  
Tomás Torres ◽  
...  

A family of four push–pull porphyrazines of A3B type, where each unit A contains two peripheral propyl chains and the unit B is endowed with a carboxylic acid, were prepared. The carboxylic acid was attached to the b-position of the pyrrolic unit, either directly (Pz 10), or through cyanovinyl (Pz 11) and phenyl (Pz 7) groups. The fourth Pz (14) consisted in a pyrazinoporphyrazine wherein the dinitrogenated heterocycle provided intrinsic donor–acceptor character to the macrocycle and contained a carboxyphenyl substituent. The direct attachment of the carboxylic acid functions and their linkers to the porphyrazine core produces stronger perturbation on the electronic properties of the macrocycle, with respect to their connection through fused benzene or pyrazine rings in TT112 and 14, respectively. The HOMO and LUMO energies of the Pzs, which were estimated with DFT calculations, show little variation within the series, except upon introduction of the cyanovinyl spacer, which produces a decrease in both frontier orbital energetic levels. This effective interaction of cyanovinyl substitution with the macrocycle is also evidenced in UV/Vis spectroscopy, where a large splitting of the Q-band indicates strong desymmetrization of the Pz. The performance of the four Pzs as photosensitizers in DSSCs were also investigated.


2015 ◽  
Vol 15 (10) ◽  
pp. 7828-7831 ◽  
Author(s):  
Dong Yuel Kwon ◽  
Geon Hyeong Lee ◽  
Young Sik Kim

Novel thermally activated delayed fluorescence (TADF) materials (ACR-OXD, 2ACR-OXD) with 9,10- dihydro-9,9-dimethylacridine (ACR) as an electron donor and oxadiazole derivative (OXD) as an electron acceptor were designed and theoretically investigated for blue OLED emitter. Using DFT and TDDFT calculations, we gained the electron distribution of HOMO and LUMO and the energy of the lowest singlet (S1) and the lowest triplet (T1) excited states. In comparison with the previously reported a xanthen derivative (ACR-XTN), ACR-OXD exhibits a promising blue TADF emitter because of destabilizing the LUMO of ACR-OXD by the change of the electron accepting group and maintaining the steric hindrance between donor and acceptor moieties which lead to efficient TADF due to the small energy gap between the lowest excited singlet (S1) state and the lowest excited triplet (T1) state.


2013 ◽  
Vol 66 (2) ◽  
pp. 212-219 ◽  
Author(s):  
N. Gokilamani ◽  
N. Muthukumarasamy ◽  
M. Thambidurai ◽  
A. Ranjitha ◽  
Dhayalan Velauthapillai

Sign in / Sign up

Export Citation Format

Share Document