Can water temperature impact litter decomposition under pollution of copper and zinc mixture

energyo ◽  
2019 ◽  
Author(s):  
Gaozhong Pu ◽  
Xingjun Tian
2018 ◽  
Vol 16 (1) ◽  
pp. 473-480
Author(s):  
Gaozhong Pu ◽  
Xingjun Tian

AbstractTo better understand the impact of warming on heavy metals (HM) associated with plant litter decomposition in streams, we investigated the impact of high and low HM (Cu and Zn) levels and different water temperatures (10,15 and 20oC) on microbial decomposition of TyphaangustifoliaL.litter and the associated extracellular enzyme activities. During a 100-day incubation, changes in litter mass losses, chemical composition (lignin and total carbohydrate), and extracellular enzyme activity were determined. The decomposition rates were accelerated by the low HM levels at 20oC (0.0051 day–1 at CK vs 0.0061 day–1 at low HM levels). The negative effects of Cu and Zn on Typha litter decomposition were more pronounced at lower temperatures (10 and 15°C). The enhanced enzyme activities of cellulase and β-glucosidase and the higher lignin/litter weight loss and lignin/carbohydrate ratios were found at 20oC and low HM treatment. The enzyme activities of β-glucosidase and cellulase were positively correlated with litter mass losses at 20oC and low HM levels. These results suggest that a 5oC increase in water temperature may attenuate the inhibition of low HM level on litter decomposition.


2021 ◽  
Author(s):  
Javier Pérez ◽  
Verónica Ferreira ◽  
Manuel A. S. Graça ◽  
Luz Boyero

AbstractLitter decomposition is an ecological process of key importance for forest headwater stream functioning, with repercussions for the global carbon cycle. The process is directly and indirectly mediated by microbial decomposers, mostly aquatic hyphomycetes, and influenced by environmental and biological factors such as water temperature and litter quality. These two factors are forecasted to change globally within the next few decades, in ways that may have contrasting effects on microbial-induced litter decomposition: while warming is expected to enhance microbial performance, the reduction in litter quality due to increased atmospheric carbon dioxide and community composition alteration may have the opposite outcome. We explored this issue through a microcosm experiment focused on early microbial-mediated litter decomposition under stream oligotrophic conditions, by simultaneously manipulating water temperature (10 °C and 15 °C) and litter quality (12 broadleaf plant species classified into 4 categories based on initial concentrations of nitrogen and tannins). We assessed potential changes in microbial-mediated litter decomposition and the performance of fungal decomposers (i.e., microbial respiration, biomass accrual, and sporulation rate) and species richness. We found stronger effects of litter quality, which enhanced the performance of microbial decomposers and decomposition rates, than temperature, which barely influenced any of the studied variables. Our results suggest that poorer litter quality associated with global change will have a major repercussion on stream ecosystem functioning.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7580 ◽  
Author(s):  
Hongyong Xiang ◽  
Yixin Zhang ◽  
David Atkinson ◽  
Raju Sekar

The decomposition of organic matter in freshwaters, such as leaf litter, can affect global nutrient (e.g., carbon) cycling. This process can be influenced by fast urbanization through increased water temperature, reduced aquatic diversity and changed leaf litter quality traits. In this study, we performed a mesocosm experiment to explore the individual and combined effects of warming (8°C higher and ambient), the presence versus absence of grazing snails (Parafossarulus striatulus), and intraspecific difference of leaf litter quality (intact versus > 40% area of Liriodendron chinense leaves grazed by terrestrial insects) on litter decomposition in urban streams. Litter decomposition rates ranged from 0.019 d−1 to 0.058 d−1 with an average decomposition rate of 0.032 ± 0.002 d−1. All the three factors had significant effects on litter decomposition rate. Warming and the presence of snails accelerated litter decomposition rates by 60% and 35% respectively. Litter decomposition rates of leaves damaged by terrestrial insects were 5% slower than that of intact leaves, because litter quality of terrestrial insect-damaged leaves was lower (i.e., higher specific leaf weight) than intact leaves. For treatments with snails, warming stimulated microbial and snail mediated litter decomposition rates by 35% and 167%, respectively. All combinations of treatments showed additive effects on litter decomposition except for the interaction between warming and snails which showed positive synergistic effects. In addition, neither temperature nor litter quality affected snail growth rate. These results imply that higher water temperature and the presence of abundant snails in urban streams greatly enhanced litter decomposition. Moreover, the effect of pest outbreaks, which resulted in lower litter quality, can cascade to aquatic ecosystems by retarding microbe-mediated litter decomposition. When these factors co-occurred, warming could synergistically interact with snails to speed up the depletion of organic matter, while the effect of leaf quality on litter decomposition may be diminished at high water temperature. These effects could further influence stream food webs and nutrient cycling.


2007 ◽  
Vol 0 (0) ◽  
pp. 070908014237001-??? ◽  
Author(s):  
SOFIA DUARTE ◽  
CLÁUDIA PASCOAL ◽  
ARTUR ALVES ◽  
ANTÓNIO CORREIA ◽  
FERNANDA CÁSSIO

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1394
Author(s):  
Szabina Simon ◽  
Brigitta Simon-Gáspár ◽  
Gábor Soós ◽  
Angéla Anda

Leaf-litter input constitutes a major load in natural waters; therefore, to achieve and maintain high water quality, it is important to thoroughly examine and understand the litter decomposition process. The widespread Solidago canadensis exerts a negative effect on the composition of the ecosystem, causes extinction of species, and modifies the function of the system. In Hungary, goldenrod constantly spreads to newer areas, which can also be observed around Lake Balaton and at the bank of the Hévíz canal. In our investigation, we examined the decomposition rate of the leaves and stems of the goldenrod with the commonly applied method of leaf litter bags. As water temperature, ranging from 24.0 °C to 13.7 °C, decreases in Hévíz canal away from Lake Hévíz (−0.32 °C/100 m), we chose three different sampling sites with different water temperatures along the canal to determine how water temperature influences the rate of decomposition. For both leaves and stems, the fastest decomposition rate was observed at the first site, closest to the lake. At further sites with lower water temperatures, leaf litter decomposition rates decreased. Results observed through Hévíz canal demonstrated that higher water temperature accelerated the goldenrod decomposition dynamics, while the drift also impacted its efficiency.


Author(s):  
G.M. Vernon ◽  
A. Surace ◽  
R. Witkus

The hepatopancreas consists of a pair of bilobed tubules comprised of two epithelial cell types. S cells are absorptive and accumulate metals such as copper and zinc. Ca++ concentrations vary between the S and B cells and during the molt cycle. Roer and Dillaman implicated Ca++-ATPase in calcium transport during molting in Carcinus maenas. This study was undertaken to compare the localization of Ca++-ATPase activity in the S and B cells during intermolt.


Sign in / Sign up

Export Citation Format

Share Document