scholarly journals Identifying Innovative Reliable Criteria Governing the Selection of Infrastructures Construction Project Delivery Systems

2021 ◽  
Vol 11 (1) ◽  
pp. 269-280
Author(s):  
Ahmed Nouh Meshref ◽  
E.A. Elkasaby ◽  
Omnia Wageh

Abstract No doubt that the most vital issues to achieve a great success project are the choice of best suitable project delivery methods. According to the experience of project management staff, the delivery of the project is chosen. However, that leads to similar repetitive issues, for example, exceeding the cost of the project and exceeding the project's schedule, and that's what many projects face. It is difficult to develop the management of the recurring issues of the project because there is no awareness of delivery methods. The efficiency of project implementation is greatly affected by selecting the appropriate delivery method. Fuzzy data at early stages of construction projects leads to the fuzzy decision of selection a suitable type to deliver the project contract. In this study, the main purpose was to determine the comprehensive criteria that significantly influence the selection of infrastructures construction project delivery systems. These criteria will aid decision making process more comprehensive and effective innovation tool to choose the reliable Infrastructures Project Delivery System.

2019 ◽  
Vol 97 ◽  
pp. 03027 ◽  
Author(s):  
Oleg Rubtsov ◽  
Ramidin Alisultanov ◽  
Nina Rogova

The urbanization of territories and the increase in density of urban development cause the necessity of introduction of improved structural solutions into the construction practice. This is also connected with both the erection of higher buildings with longer span structures and the use of non-standard methods for the analysis of structures. The introduction of modern structural patterns lessens considerably the weight of structures, reduces the consumption of materials and cuts the construction production costs. At the same time, the responsibility for the construction projects enhances. A systematic control over the state of structures including a quasi-continuous one, allows us to reveal the very beginning of destructive processes and to take measures for their liquidation. One of monitoring methods is the tachymetry survey of positions of a number of adjusting marks fixed at the structural elements. The non-reflection mode of operation of tachymetry survey allows lifting the restrictions for the number of points under observations. The combination of the afore-said factors determines the urgency of the use of the tachymetry as a tool for monitoring the state of the construction project. The subject of the study: the subject of the present research work is the methodology of selection of tachymetry spacing during the deformation monitoring of a construction project. The tachymetry can be carried out both in the mode of focusing on pre-established marks, and in the non-reflection mode through the points on the structure. The disadvantage of the first method is the need of installation of light-reflecting marks, which is not always possible due to some technical and/or aesthetic reasons and may lead to a significant increase in the cost of monitoring. The disadvantage of the second method is a reduced accuracy of the measurements. A wide incremental step may lead to the failure of detection of deformation processes, a narrow step means a considerable increase in the monitoring time and an unjustified rise in the cost of monitoring. Objectives: the purpose of this research work is the optimization of tachymetry spacing, which will reveal all deviations of structural elements from their permanent positions by a value exceeding the accuracy of measurements. Materials and methods: the initial material for the study included the results of geodetic observations carried out at various construction projects, in particular, the tachymetry results. The method of study includes the comparing of the limiting admissible curvature value to the minimum deformation value measured with the tachymeter accuracy. Results: a methodology is suggested for the selection of the tachymetry survey step. On its basis, a formula for the determination of a step value is offered that takes into account the geometry of the structure, the strain capacity of the material and the accuracy of the survey. Conclusions: the obtained results allow us to optimize the number of the observation points during the tachymetry survey and to ensure the detection of all destructive effects associated with structural geometry changes at the construction project. The descriptions of the methodology are recommended for their application in the development of geodetic monitoring programmes.


2013 ◽  
Vol 4 (3) ◽  
pp. 54-65 ◽  
Author(s):  
Robert Schultz ◽  
Ahmad Sarfaraz ◽  
Kouroush Jenab

Risk and reliability are two main factors that must be studied in order to measure the successful rate of a project. As a result, innovative project delivery methods have been proposed to mitigate the risk and improve reliability of a project. The intent of this study is to compare the use of the Analytical Hierarchical Process (AHP) and fuzzy AHP for decisions surrounding the early stages of construction projects based on risk and reliability measures. Financial risk is especially high during the early design stages of a project due to the unknown obstacles that will follow. The case study uses the selection of a project delivery method as an example, and provides a sample project to highlight the project-specific variability of the multi-criteria decision analysis.


2019 ◽  
Vol 5 (1) ◽  
pp. 13-19
Author(s):  
Fitri Nur Kharina ◽  
Kusno Adi Sambowo

Construction projects in all regions continues to be developed for the creation of facilities that can be utilized by the community. One of them is the construction of apartments which are now being intensively carried out to meet residential needs for the community. Making a construction project plan always refers to estimates that exist at the time development plan is made, therefore problems can arise if there is a discrepancy between the plans that have been made and the actual reality. So the impact that often occurs is the delay in the time of project implementation which can also be accompanied by an increase in the cost of implementing the project. In the construction project of Cinere Terrace Suites Apartemen & Citywalk, Jakarta there was a delay resulting in a late payment of monthly bill progress by the owner. Based on the above reasons, this research was conducted to find out how the project performance was seen from the cost and time period of the review period. how is the estimated cost and time to complete the overall project work. The method used in the analysis of this study is the Earned Value Method. Based on the results of the analysis carried out for 29 weeks the project performance on schedule has been delayed and cost shows a positive value. For the estimated completion time of the project there is an increase in time whose duration increases from the planned 98 weeks or 685 days to 109,624 weeks or 768 days. While the estimated cost of completing the project from the results of the analysis obtained a value of Rp. 270,147,448,569.16 smaller than the planned cost of Rp. 315,272,727,272.73. With the difference VAC of Rp. 45,125,278,703.57 this shows that there are benefits obtained by the contractor.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
William Paolillo ◽  
Branka V. Olson ◽  
Edward Straub

People-centered innovation is a paradigm shift in the construction industry. It is derived from the supposition that people not methods, schedules, or budgets deliver projects. Our data suggest that a multilevel, multidisciplinary project team through shared vision, values, and a common vernacular defines, designs, and delivers more successful projects than traditional methods. These projects meet the needs of shareholders, the community, stakeholders, and the planet. We employ the concepts of emotional intelligence and agency theory to explain an integrated project delivery (IPD) construction project using lean tactics that not only delivered, but also exceeded expectations resulting in a six-month schedule acceleration and $60M savings over the original estimated cost of the project calculated assuming traditional project delivery methods. The safety rating for this project was 50% better than the national average and the expected improvement in operating margin for the new building is 33% greater. This paper introduces the notion of people-centered innovation to an industry that has struggled to adapt and show positive results over recent decades. Our case study describes the significance of people-centered innovation in construction project delivery. We discuss the implications for the construction industry going forward.


2019 ◽  
Vol 9 (1) ◽  
pp. 282-291 ◽  
Author(s):  
Michał Tomczak

AbstractOne of the key problems in managing the realization of a construction project is the selection of appropriate working crews and coordinating their activities in a way that ensures the highest degree of implementation of defined goals (minimizing the project duration and/or reducing downtime and related costs). Most of the existing methods of work harmonization used in construction industry allow obtaining the desired results only in relation to the organization of the processes realization in repetitive linear projects. In case of realization of non-linear construction objects or construction units, it is usually necessary to choose between the reduction of the project implementation time and maintaining the continuity of crews work on the units. It was found that there is a lack in the literature of developed method enabling harmonization of crews’ work, while minimizing the downtime at work and the duration of the entire project taking into account additional constraints, e.g. the need to not exceed the deadlines for the realization of the project stages.The article presents the concept of a multi-criteria optimization method of harmonizing the execution of non-linear processes of a multi-unit construction project in deterministic conditions. It will enable the reduction of realization time and downtimes in work, taking into account the preferences of the decision maker regarding the relevance of the optimization criteria. A mathematical model for optimizing the selection of crews and order of completion of units in multi-unit construction projects was also developed. In order to present the possibility of usage of the developed concept, an example of the optimal selection of crews and their work schedule was solved and presented. The proposed method may allow for better use of the existing production potential of construction enterprises and ensure synchronization of the crews employed during the work, especially in the case of difficulties in acquiring qualified staff in construction industry.


Sign in / Sign up

Export Citation Format

Share Document