Synthesis and characterization of 4- and 6-arm star-shaped poly(ε-caprolactone)s

e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Michael A. R. Meier ◽  
Ulrich S. Schubert

AbstractStar-shaped poly(ε-caprolactone) (PCL) polymers were synthesized and fully characterized by gel permeation chromatography, matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) as well as 1H NMR spectroscopy. First a series of four-armed PCLs with different molecular weights was prepared and analyzed with the mentioned analytical techniques revealing that the applied ring-opening polymerization was controlled and defined star-shaped polymers could be synthesized. Subsequently, also the synthesis of six-armed PCL polymers was investigated with the conclusion that also these starshaped polymers could be prepared in a controlled fashion.

2011 ◽  
Vol 197-198 ◽  
pp. 21-26
Author(s):  
Ji Hang Li ◽  
Dong Jian Shi ◽  
Na Hu ◽  
Wei Fu Dong ◽  
Jun Feng Li ◽  
...  

In this paper, a novel biodegradable and fluorescent polymer: fluorescein-polylactide (FL-PLA) was synthesized by FL and lactide in the method of ring-opening polymerization with the catalysis of Sn(Oct)2under 130°C . The structure and molecular weight of FL-PLA were characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H-NMR) spectroscopy, and gel permeation chromatography (GPC). The molecular weight of FL-PLA increased from 9.03×103to 21.24×103with decreasing the amount of FL and kept a narrow distribution. The result of differential scanning calorimeter (DSC) showed that Tgincreased from 52 to 72°C with increasing the molecular weight of polymer. Moreover, the average number content of FL in each molecular chain decreased from 0.96 to 0.81 with decrement of the amount of FL. Furthermore, FL-PLA showed the fluorescence property, and the fluorescence intensity could be controlled by the amount of FL. The FL-PLA nanoparticles were prepared by mixing the good and poor solvent, and the diameter was about 3 μm with regular spherical morphology.


RSC Advances ◽  
2020 ◽  
Vol 10 (16) ◽  
pp. 9623-9632
Author(s):  
Anna M. J. Coenen ◽  
Jules A. W. Harings ◽  
Samaneh Ghazanfari ◽  
Stefan Jockenhoevel ◽  
Katrien V. Bernaerts

Elucidating the mechanism of the cationic ring-opening polymerization of dioxolane using gel permeation chromatography, matrix assisted laser desorption/ionization time of flight mass spectrometry and 31P NMR.


2013 ◽  
Vol 9 ◽  
pp. 647-654 ◽  
Author(s):  
Astrid Hoppe ◽  
Faten Sadaka ◽  
Claire-Hélène Brachais ◽  
Gilles Boni ◽  
Jean-Pierre Couvercelle ◽  
...  

The ring-opening polymerization of ε-caprolactone (ε-CL) and rac-lactide (rac-LA) under solvent-free conditions and using 1-n-butyl-3-methylimidazolium-2-carboxylate (BMIM-2-CO2) as precatalyst is described. Linear and star-branched polyesters were synthesized by successive use of benzyl alcohol, ethylene glycol, glycerol and pentaerythritol as initiator alcohols, and the products were fully characterized by 1H and 13C{1H} NMR spectroscopy, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). BMIM-2-CO2 acts as an N-heterocyclic carbene precursor, resulting from in situ decarboxylation, either by heating under vacuo (method A) or by addition of NaBPh4 (method B). Possible catalytic and deactivation mechanisms are proposed.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Evelyn Carolina Martínez Ceballos ◽  
Ricardo Vera Graziano ◽  
Gonzalo Martínez Barrera ◽  
Oscar Olea Mejía

Poly(dichlorophosphazene) was prepared by melt ring-opening polymerization of the hexachlorocyclotriphosphazene. Poly[bis(2-hydroxyethyl-methacrylate)-phosphazene] and poly[(2-hydroxyethyl-methacrylate)-graft-poly(lactic-acid)-phosphazene] were obtained by nucleophilic condensation reactions at different concentrations of the substituents. The properties of the synthesized copolymers were assessed by FTIR,1H-NMR and31P-NMR, thermal analysis (DSC-TGA), and electron microscopy (SEM). The copolymers have a block structure and show twoTg's below room temperature. They are stable up to a temperature of 100°C. The type of the substituents attached to the PZ backbone determines the morphology of the polymers.


2015 ◽  
Vol 87 (11-12) ◽  
pp. 1085-1097 ◽  
Author(s):  
Li Wang ◽  
Stefan Baudis ◽  
Karl Kratz ◽  
Andreas Lendlein

AbstractA versatile strategy to integrate multiple functions in a polymer based material is the formation of polymer networks with defined nanostructures. Here, we present synthesis and comprehensive characterization of covalently surface functionalized magnetic nanoparticles (MNPs) comprising a bi-layer oligomeric shell, using Sn(Oct)2 as catalyst for a two-step functionalization. These hydroxy-terminated precursors for degradable magneto- and thermo-sensitive polymer networks were prepared via two subsequent surface-initiated ring-opening polymerizations (ROPs) with ω-pentadecalactone and ε-caprolactone. A two-step mass loss obtained in thermogravimetric analysis and two distinct melting transitions around 50 and 85°C observed in differential scanning calorimetry experiments, which are attributed to the melting of OPDL and OCL crystallites, confirmed a successful preparation of the modified MNPs. The oligomeric coating of the nanoparticles could be visualized by transmission electron microscopy. The investigation of degrafted oligomeric coatings by gel permeation chromatography and 1H-NMR spectroscopy showed an increase in number average molecular weight as well as the presence of signals related to both of oligo(ω-pentadecalactone) (OPDL) and oligo(ε-caprolactone) (OCL) after the second ROP. A more detailed analysis of the NMR results revealed that only a few ω-pentadecalactone repeating units are present in the degrafted oligomeric bi-layers, whereby a considerable degree of transesterification could be observed when OPDL was polymerized in the 2nd ROP step. These findings are supported by a low degree of crystallinity for OPDL in the degrafted oligomeric bi-layers obtained in wide angle X-ray scattering experiments. Based on these findings it can be concluded that Sn(Oct)2 was suitable as catalyst for the preparation of nanosized bi-layered coated MNP precursors by a two-step ROP.


Author(s):  
Olubummo Adekunle ◽  
Susanne Tanner ◽  
Wolfgang H Binder

We report on the block copolymerization of two structurally different norbornene monomers (±)-endo,exo-bicyclo[2.2.1]-hept-5-ene-2,3-dicarboxylic acid dimethylester (7), and (±)-endo,exo-bicyclo[2.2.1]-hept-5-ene-2,3-dicarboxylic acid bis(1-oxyl-2,2,6,6-tetramethyl-piperidin-4-yl) ester (9) using ruthenium based Grubbs’ type initiators [(PCy3)2Cl2Ru(benzylidene)] G1 (PCy3 = tricyclohexylphosphine), [(H2IMes)(PCy3)Cl2Ru(benzylidene)] G2 (H2IMes = 1,3-bis(mesityl)-2-imidazolidinylidene), [(H2IMes)(py)2Cl2Ru(benzylidene)] G3 (py = pyridine or 3-bromopyridine) and Umicore type initiators [(PCy3)2Cl2Ru(3-phenylinden-1-ylidene)] U1 (PCy3 = tricyclohexylphosphine), [(H2IMes)(PCy3)Cl2Ru(3-phenylinden-1-ylidene)] U2 (H2IMes = 1,3-bis(mesityl)-2-imidazolidinylidene), [(H2IMes)(py)Cl2Ru(3-phenylinden-1-ylidene)] U3 (py = pyridine or 3-bromopyridine) via ring opening polymerization (ROMP). The crossover reaction and the polymerization kinetics were investigated using matrix assisted laser desorption ionization mass spectroscopy (MALDI-TOF) and nuclear magnetic resonance (NMR), respectively. MALDI showed that there was a complete crossover reaction after the addition of 25 equivalents of the second monomer. NMR investigation showed that U3 gave a faster rate of polymerization in comparison to U1. The synthesis of block copolymers with molecular weights up to M n = 31 000 g/mol with low polydispersities (M w/M n = 1.2) is reported.


2011 ◽  
Vol 181-182 ◽  
pp. 185-188
Author(s):  
Run Tao Dong ◽  
Qing Bin Xue ◽  
Ling Min Sun ◽  
Quan Xuan Zhang

A series of azobenzene containing group Poly (L-lactic acid) (PLLA) were synthesized by Ring-Opening Polymerization of L-lactide (L-LA) catalysted by Sn (Oct)2initiated by alcohol-OH containing the azobenzene chromophores. Their molecular weights were well controlled by the feed ratio as characterized by Gel Permeation Chromatography (GPC) and1H NMR Spectrometry and agreed well with theoretical values. The thermal properties and liquid crystal phases were investigated by Differential Scanning Calorimetry (DSC), polarized optical microscopy (POM) and X-ray Diffraction (XRS) measurements. Cis-trans photoisomerization behavior of the polymers in the solutions and the films were studied with UV irradiation. By the Circular Dichroism Spectroscopy (CD) characterization of the solutions and films of the polymer, the PLLA segments show huge optical rotation power in helical structure.


e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Jintian Yang ◽  
Wei Huang ◽  
Yongfeng Zhou ◽  
Deyue Yan ◽  
Xiaohang Wang

AbstractA series of novel aromatic copolyimides was synthesized from pyromellitic dianhydride with the commercial diamine 4,4’-methylenebisaniline (MBA) and the diamine 4,4’-methylenebis(2-tert-butylaniline) (MBTBA) specially designed by ourselves. The solubility of the copolyimides in conventional solvents decreased with the mole ratio of MBTBA to MBA. When MBTBA/MBA was larger than 8/2, the copolyimides are soluble in low boiling point solvents (such as chloroform and tetrahydrofuran) and can form a transparent, flexible, tough film by solution casting. When MBTBA/MBA was between 7/3 and 5/5, the copolyimides are only soluble in dipolar aprotic solvents (such as dimethylformamide and N-methyl-2-pyrrolidone) and form films, too. The copolyimide was precipitated in m-cresol in the polymerization process when MBTBA/MBA was lower than 5/5. The number-average molecular weights of the soluble copolyimides measured by gel permeation chromatography were larger than 5.0·104 and the polydispersity index was higher than 1.5. Only one glass transition of these copolyimides was detected at around 350°C. The copolyimides did not show appreciable decomposition up to 400°C under air and 550°C under nitrogen, and their thermal stability increased a little with the introduction of MBA into the polymer chains.


Sign in / Sign up

Export Citation Format

Share Document