Studies on the synthesis, characterization and application of a novel copolymer macromonomer for polymeric solidsolid phase change materials

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Peng Xi ◽  
Xiao-hua Gu ◽  
Bowen Cheng

AbstractA novel copolymer as a macromonomer with a polyethylene glycol (PEG) unit as the phase change element and a vinyl group was synthesized for the preparation of polymeric solid-solid phase change materials. The IR, 1HNMR, DSC and WAXD and POM were employed to determine the structure and properties of the novel monomer. The results show that the novel monomer possess steady molecular structure, excellent crystal properties, higher phase change enthalpy and reactivity. Furthermore, the novel polymeric solid-solid phase change material was also prepared via the copolymerization of the novel copolymer macromonomer and styrene. The phase change properties of the polymeric solid-solid phase change material were characterized.

2014 ◽  
Vol 703 ◽  
pp. 3-8 ◽  
Author(s):  
Jing Guo ◽  
Xiang Kang You ◽  
Li Zhang ◽  
Heng Xue Xiang ◽  
Sen Zhang ◽  
...  

In this study, novel solid–solid phase change materials (PCM) composed of polyacrylonitrile, binary of fatty acids ((blending of stearic acid (SA) and lauric acid (LA)) and zeolite molecular sieve (ZMS) were prepared by solution blending process. The structure and properties of the PCM were characterized using flourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), polarized optical microscopy (POM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG), respectively. DSC analysis indicated that the crystallization latent heat of the PCM was 125.22 J/g and its phase transition temperature was about 17 °C. The temperature curve for step cooling of the PCM showed that it’s holding time achieved 1 480 s, which explains that the PCM had excellent heat-insulating properties. Based on all results it can be concluded that the novel PCM can be considered as potential PCM for thermal energy storage.


2011 ◽  
Vol 284-286 ◽  
pp. 1983-1986 ◽  
Author(s):  
Qi Song Shi ◽  
Tai Qi Liu

This study involved the preparation and characterization of polyethylene glycol (PEG)/ polyacrylamide (PAM) composite as solid-solid phase change materials (PCM). In this study, the polyethylene glycol / polyacrylamide composites as solid-solid phase change material was prepared, and the phase change behavior and crystalline morphology of the phase change materials were investigated using differential scanning calorimeter (DSC) , wide-angle X-ray diffraction (WAXD). Results indicated that the composite remained solid when the weight percentage of PEG was less than 60%. The PEG/PAM composite that exhibited solid-solid phase change behavior can be used as a new kind of phase change material for the shortage of thermal energy and temperature control.


2011 ◽  
Vol 347-353 ◽  
pp. 2801-2804 ◽  
Author(s):  
Quan Ying Yan ◽  
Li Li Jin

Solid-solid phase change material can increase the thermal storage capacity of the wall, decrease the indoor temperature fluctuation and building energy consumption when it was used in the phase change material (PCM) wall. This paper investigated experimentally the phase change temperature and latent heat of polyalcohols binary system with different component, and analyzed the feasibility of phase change wall. The results show that binary systems have suitable phase change temperature and bigger phase change latent. They are ideal phase change materials used in the wall.


2003 ◽  
Author(s):  
Ahmed ElGafy ◽  
Osama Mesalhy ◽  
Khalid Lafdi ◽  
K. Bowman

Heat transfer processes undergoing liquid-solid phase transformation have been of continuing interest for many researchers. Phase Change Materials, (PCMs); have received great consideration in electronic industry for cooling of electronics and in telecommunication equipment to control internal temperature under emergency operating conditions. High melting temperature materials have been proposed as thermal energy storage mediums in space applications because of their high melting temperatures and latent heat. In the present work, a numerical simulation is developed to predict the thermal performance of a phase change material of high melting point in a cylindrical enclosure. In this simulation the phases are assumed to be homogeneous and a source term, S, arises from melting and solidification processes is considered as a function of the latent heat of fusion and the liquid phase fraction. By introducing the thermo-physical properties of one of those materials, the thermal performance of it as a phase change material is predicted.


2012 ◽  
Vol 512-515 ◽  
pp. 1712-1715
Author(s):  
Xiao Hua Gu ◽  
Bao Yun Xu ◽  
Jia Liang Zhou ◽  
Shi Wei Li

This paper details the preparation of one kind of PEG/MMT solid-solid phase change materials. With polyethylene glycol (PEG) as the phase change materials, montmorillonite (MMT) as skeletons, through the graft copolymerization method, prepare PEG/MMT solid-solid phase change energy storage materials. The structure, the phase transition behavior and thermal stability of PEG/MMT phase change materials were analyzed and studied by infrared spectroscopy (FTIR), thermogravimetry (TG) and differential scanning calorimetry (DSC), and studied the influence of different molecular weight PEG on the capability and structure of the material, polymer phase change energy storage behavior and crystallization behavior. Finally, The PEG/MMT solid-solid phase change material could improve enthalpy value and thermal stability.


2018 ◽  
Author(s):  
Ryohei Gotoh ◽  
Tsuyoshi Totani ◽  
Masashi Wakita ◽  
Harunori Nagata

2015 ◽  
Vol 52 (8) ◽  
pp. 617-624 ◽  
Author(s):  
Siyang Mu ◽  
Jing Guo ◽  
Chunfang Yu ◽  
Yuanfa Liu ◽  
Yumei Gong ◽  
...  

Author(s):  
Ali Deriszadeh ◽  
Filippo de Monte ◽  
Marco Villani

Abstract This study investigates the cooling performance of a passive cooling system for electric motor cooling applications. The metal-based phase change materials are used for cooling the motor and preventing its temperature rise. As compared to oil-based phase change materials, these materials have a higher melting point and thermal conductivity. The flow field and transient heat conduction are simulated using the finite volume method. The accuracy of numerical values obtained from the simulation of the phase change materials is validated. The sensitivity of the numerical results to the number of computational elements and time step value is assessed. The main goal of adopting the phase change material based passive cooling system is to maintain the operational motor temperature in the allowed range for applications with high and repetitive peak power demands such as electric vehicles by using phase change materials in cooling channels twisted around the motor. Moreover, this study investigates the effect of the phase change material container arrangement on the cooling performance of the under study cooling system.


Sign in / Sign up

Export Citation Format

Share Document