scholarly journals Sensitivity of vegetation indices in relation to parameters of Norway spruce stands

2017 ◽  
Vol 59 (2) ◽  
pp. 85-98 ◽  
Author(s):  
Aneta Modzelewska ◽  
Krzysztof Stereńczak ◽  
Monika Mierczyk ◽  
Sylwia Maciuk ◽  
Radomir Bałazy ◽  
...  

AbstractThe main goal of this research is to shed further light on the sensitivity of the vegetation indices to spatial changes of stand parameters. The analysis was done within mountain forests in the Sudetes and the Beskids in southern Poland. Some 1327 stands were analysed with more than 70 percent of spruce contribution in the species composition. The response of selected vegetation indices was verified in relation to the alterations of spruce participation, stand height, volume, stand density and diameter. The following indices were analysed: Normalized Difference Vegetation Index, Normalized Difference Red Edge Index, Green Normalized Difference Vegetation Index and Wide Dynamic Range Vegetation Index. Indices were calculated based on the Rapid Eye (Black Bridge) images. All the analysed stand characteristics influence the values of vegetation indices. In general: mean height, diameter at breast height, volume and spruce participation are the most negatively correlated with the indices. Density is a variable that, in general, cannot directly be used for indices correction, because it is hard to find any stable trend. NDRE is the most stable index for the analysis of stand characteristics.

2018 ◽  
Vol 41 (3) ◽  
Author(s):  
Elias Fernando Berra ◽  
Denise Cybis Fontana ◽  
Tatiana Mora Kuplich

ABSTRACT This study aimed to increase satellite-derived Normalized Difference Vegetation Index (NDVI) sensitivity to biophysical parameters changes with aid of a forest age-based adjustment factor. This factor is defined as a ratio between stand age and age of rotation, which value multiplied by Landsat-5/TM-derived NDVI generated the so-called adjusted index NDVI_a. Soil Adjusted Vegetation Index (SAVI) was also calculated. The relationship between these vegetation indices (VI) with Eucalyptus and Pinus stands’ wood volume was investigated. The adjustment factor caused an increase in NDVI dynamic range values, since older stands tended to be assigned with highest NDVI values, while younger ones tended to be forced to assume lower NDVI values. As a result, direct and significant relationship between NDVI_a and wood volume could be maintained for wider ranges of wood volume. However, it was observed that NDVI_a was only statistically superior to NDVI and SAVI when a detailed age dataset is available. It is conclude that, the stand age has potential to improve NDVI sensitivity to biophysical parameters allowing that quantitative estimates could be made since young to adult stands.


2021 ◽  
Vol 918 (1) ◽  
pp. 012021
Author(s):  
Samsuri ◽  
C A B Ginting ◽  
A Zaitunah ◽  
A Susilowati

Abstract The growth of urban areas and the population generally requires the guarantee of a healthy and comfortable environment. The expansion of physical developments and urban areas, year after year, can no longer support human existence. In Indonesia, the city should have at least 10% of its surface area committed to private urban forest and 20% for public urban forest. Jakarta is Indonesia’s largest city, and has only 9.98% urban forest coverage. Medan Baru city is facing the same issue, as it continues to grow year after year. The population requires a comfortable environment, which includes safe drinking water and clean, fresh air. As a result, vegetation is an important component of Medan Baru sub-district that offers numerous benefits. It is necessary to conduct research on the analysis of vegetation density in the Medan Baru, using vegetation indices such as Normalized Difference Vegetation Index (NDVI). The research aimed to analyze vegetation density change and mapping the vegetation density of Medan Baru city. The research found the largest area was relatively dense vegetation, about 262.00 hectares (47.87%). The research also found a decrease in urban forest quality, indicated by an increase in the sparse density class of 41.90 hectares and a decrease in the relative-dense vegetation class with 51.65 hectares. This reduction of vegetation density will reduce the urban forest quality by influencing urban forest capability in absorbing carbon dioxide and alleviating the oxygen productivity volume. Areas with lower stand density must be considered in future urban development planning. Moreover, decrease in vegetation density and urban forest area should be a primary consideration in Medan urban forest management.


2019 ◽  
Vol 11 (9) ◽  
pp. 1073 ◽  
Author(s):  
Pedro C. Towers ◽  
Albert Strever ◽  
Carlos Poblete-Echeverría

Leaf area per unit surface (LAI—leaf area index) is a valuable parameter to assess vine vigour in several applications, including direct mapping of vegetative–reproductive balance (VRB). Normalized difference vegetation index (NDVI) has been successfully used to assess the spatial variability of estimated LAI. However, sometimes NDVI is unsuitable due to its lack of sensitivity at high LAI values. Moreover, the presence of hail protection with Grenbiule netting also affects incident light and reflection, and consequently spectral response. This study analyses the effect of protective netting in the LAI–NDVI relationship and, using NDVI as a reference index, compares several indices in terms of accuracy and sensitivity using linear and logarithmic models. Among the indices compared, results show NDVI to be the most accurate, and ratio vegetation index (RVI) to be the most sensitive. The wide dynamic range vegetation index (WDRVI) presented a good balance between accuracy and sensitivity. Soil-adjusted vegetation index 2 (SAVI2) appears to be the best estimator of LAI with linear models. Logarithmic models provided higher determination coefficients, but this has little influence over the normal range of LAI values. A similar NDVI–LAI relationship holds for protected and unprotected canopies in initial vegetation stages, but different functions are preferable once the canopy is fully developed, in particular, if tipping is performed.


2020 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Faradina Marzukhi ◽  
Nur Nadhirah Rusyda Rosnan ◽  
Md Azlin Md Said

The aim of this study is to analyse the relationship between vegetation indices of Normalized Difference Vegetation Index (NDVI) and soil nutrient of oil palm plantation at Felcra Nasaruddin Bota in Perak for future sustainable environment. The satellite image was used and processed in the research. By Using NDVI, the vegetation index was obtained which varies from -1 to +1. Then, the soil sample and soil moisture analysis were carried in order to identify the nutrient values of Nitrogen (N), Phosphorus (P) and Potassium (K). A total of seven soil samples were acquired within the oil palm plantation area. A regression model was then made between physical condition of the oil palms and soil nutrients for determining the strength of the relationship. It is hoped that the risk map of oil palm healthiness can be produced for various applications which are related to agricultural plantation.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1486
Author(s):  
Chris Cavalaris ◽  
Sofia Megoudi ◽  
Maria Maxouri ◽  
Konstantinos Anatolitis ◽  
Marios Sifakis ◽  
...  

In this study, a modelling approach for the estimation/prediction of wheat yield based on Sentinel-2 data is presented. Model development was accomplished through a two-step process: firstly, the capacity of Sentinel-2 vegetation indices (VIs) to follow plant ecophysiological parameters was established through measurements in a pilot field and secondly, the results of the first step were extended/evaluated in 31 fields, during two growing periods, to increase the applicability range and robustness of the models. Modelling results were examined against yield data collected by a combine harvester equipped with a yield-monitoring system. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were examined as plant signals and combined with Normalized Difference Water Index (NDWI) and/or Normalized Multiband Drought Index (NMDI) during the growth period or before sowing, as water and soil signals, respectively. The best performing model involved the EVI integral for the 20 April–31 May period as a plant signal and NMDI on 29 April and before sowing as water and soil signals, respectively (R2 = 0.629, RMSE = 538). However, model versions with a single date and maximum seasonal VIs values as a plant signal, performed almost equally well. Since the maximum seasonal VIs values occurred during the last ten days of April, these model versions are suitable for yield prediction.


2021 ◽  
Vol 13 (6) ◽  
pp. 1144
Author(s):  
Mahendra Bhandari ◽  
Shannon Baker ◽  
Jackie C. Rudd ◽  
Amir M. H. Ibrahim ◽  
Anjin Chang ◽  
...  

Drought significantly limits wheat productivity across the temporal and spatial domains. Unmanned Aerial Systems (UAS) has become an indispensable tool to collect refined spatial and high temporal resolution imagery data. A 2-year field study was conducted in 2018 and 2019 to determine the temporal effects of drought on canopy growth of winter wheat. Weekly UAS data were collected using red, green, and blue (RGB) and multispectral (MS) sensors over a yield trial consisting of 22 winter wheat cultivars in both irrigated and dryland environments. Raw-images were processed to compute canopy features such as canopy cover (CC) and canopy height (CH), and vegetation indices (VIs) such as Normalized Difference Vegetation Index (NDVI), Excess Green Index (ExG), and Normalized Difference Red-edge Index (NDRE). The drought was more severe in 2018 than in 2019 and the effects of growth differences across years and irrigation levels were visible in the UAS measurements. CC, CH, and VIs, measured during grain filling, were positively correlated with grain yield (r = 0.4–0.7, p < 0.05) in the dryland in both years. Yield was positively correlated with VIs in 2018 (r = 0.45–0.55, p < 0.05) in the irrigated environment, but the correlations were non-significant in 2019 (r = 0.1 to −0.4), except for CH. The study shows that high-throughput UAS data can be used to monitor the drought effects on wheat growth and productivity across the temporal and spatial domains.


2018 ◽  
Vol 37 (3) ◽  
pp. 219-236 ◽  
Author(s):  
Khalid Mahmood ◽  
Zia Ul-Haq ◽  
Fiza Faizi ◽  
Syeda A. Batol

This study compares the suitability of different satellite-based vegetation indices (VIs) for environmental hazard assessment of municipal solid waste (MSW) open dumps. The compared VIs, as bio-indicators of vegetation health, are normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and modified soil adjusted vegetation index (MSAVI) that have been subject to spatio-temporal analysis. The comparison has been made based on three criteria: one is the exponential moving average (EMA) bias, second is the ease in visually finding the distance of VI curve flattening, and third is the radius of biohazardous zone in relation to the waste heap dumped at them. NDVI has been found to work well when MSW dumps are surrounded by continuous and dense vegetation, otherwise, MSAVI is a better option due to its ability for adjusting soil signals. The hierarchy of the goodness for least EMA bias is MSAVI> SAVI> NDVI with average bias values of 101 m, 203 m, and 270 m, respectively. Estimations using NDVI have been found unable to satisfy the direct relationship between waste heap and hazardous zone size and have given a false exaggeration of 374 m for relatively smaller dump as compared to the bigger one. The same false exaggeration for SAVI and MSAVI is measured to be 86 m and -14 m, respectively. So MSAVI is the only VI that has shown the true relation of waste heap and hazardous zone size. The best visualization of distance-dependent vegetation health away from the dumps is also provided by MSAVI.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 346-353 ◽  
Author(s):  
Francisca López-Granados ◽  
Montse Jurado-Expósito ◽  
Jose M. Peña-Barragán ◽  
Luis García-Torres

Field research was conducted to determine the potential of hyperspectral and multispectral imagery for late-season discrimination and mapping of grass weed infestations in wheat. Differences in reflectance between weed-free wheat and wild oat, canarygrass, and ryegrass were statistically significant in most 25-nm-wide wavebands in the 400- and 900-nm spectrum, mainly due to their differential maturation. Visible (blue, B; green, G; red, R) and near infrared (NIR) wavebands and five vegetation indices: Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), R/B, NIR-R and (R − G)/(R + G), showed potential for discriminating grass weeds and wheat. The efficiency of these wavebands and indices were studied by using color and color-infrared aerial images taken over three naturally infested fields. In StaCruz, areas infested with wild oat and canarygrass patches were discriminated using the indices R, NIR, and NDVI with overall accuracies (OA) of 0.85 to 0.90. In Florida–West, areas infested with wild oat, canarygrass, and ryegrass were discriminated with OA from 0.85 to 0.89. In Florida–East, for the discrimination of the areas infested with wild oat patches, visible wavebands and several vegetation indices provided OA of 0.87 to 0.96. Estimated grass weed area ranged from 56 to 71%, 43 to 47%, and 69 to 80% of the field in the three locations, respectively, with per-class accuracies from 0.87 to 0.94. NDVI was the most efficient vegetation index, with a highly accurate performance in all locations. Our results suggest that mapping grass weed patches in wheat is feasible with high-resolution satellite imagery or aerial photography acquired 2 to 3 wk before crop senescence.


2012 ◽  
Vol 84 (2) ◽  
pp. 263-274 ◽  
Author(s):  
Fábio M. Breunig ◽  
Lênio S. Galvão ◽  
Antônio R. Formaggio ◽  
José C.N. Epiphanio

Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS). In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI1640 and NDWI2120) with the soybean development in two growing seasons (2004-2005 and 2005-2006). To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.


2019 ◽  
Vol 19 (8) ◽  
pp. 1685-1702 ◽  
Author(s):  
Juan José Martín-Sotoca ◽  
Antonio Saa-Requejo ◽  
Rubén Moratiel ◽  
Nicolas Dalezios ◽  
Ioannis Faraslis ◽  
...  

Abstract. Vegetation indices based on satellite images, such as the normalized difference vegetation index (NDVI), have been used in countries like the USA, Canada and Spain for damaged pasture and forage insurance over the last few years. This type of agricultural insurance is called satellite-index-based insurance (SIBI). In SIBI, the occurrence of damage is defined as normal distributions. In this work a pasture area at the north of the Community of Madrid (Spain) has been delimited by means of Moderate Resolution Imaging Spectroradiometer (MODIS) images. A statistical analysis of NDVI histograms was applied to seek for alternative distributions using the maximum likelihood method and χ2 test. The results show that the normal distribution is not the optimal representation and the generalized extreme value (GEV) distribution presents a better fit through the year based on a quality estimator. A comparison between normal and GEV is shown with respect to the probability under a NDVI threshold value throughout the year. This suggests that an a priori distribution should not be selected and a percentile methodology should be used to define a NDVI damage threshold rather than the average and standard deviation, typically of normal distributions. Highlights. The GEV distribution provides better fit to the NDVI historical observations than the normal one. Differences between normal and GEV distributions are higher during spring and autumn, which are transition periods in the precipitation regimen. NDVI damage threshold shows evident differences using normal and GEV distributions both covering the same probability (24.20 %). NDVI damage threshold values based on percentile calculation are proposed as an improvement in the index-based insurance in damaged pasture.


Sign in / Sign up

Export Citation Format

Share Document