scholarly journals Using remote sensing for identification of late-season grass weed patches in wheat

Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 346-353 ◽  
Author(s):  
Francisca López-Granados ◽  
Montse Jurado-Expósito ◽  
Jose M. Peña-Barragán ◽  
Luis García-Torres

Field research was conducted to determine the potential of hyperspectral and multispectral imagery for late-season discrimination and mapping of grass weed infestations in wheat. Differences in reflectance between weed-free wheat and wild oat, canarygrass, and ryegrass were statistically significant in most 25-nm-wide wavebands in the 400- and 900-nm spectrum, mainly due to their differential maturation. Visible (blue, B; green, G; red, R) and near infrared (NIR) wavebands and five vegetation indices: Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), R/B, NIR-R and (R − G)/(R + G), showed potential for discriminating grass weeds and wheat. The efficiency of these wavebands and indices were studied by using color and color-infrared aerial images taken over three naturally infested fields. In StaCruz, areas infested with wild oat and canarygrass patches were discriminated using the indices R, NIR, and NDVI with overall accuracies (OA) of 0.85 to 0.90. In Florida–West, areas infested with wild oat, canarygrass, and ryegrass were discriminated with OA from 0.85 to 0.89. In Florida–East, for the discrimination of the areas infested with wild oat patches, visible wavebands and several vegetation indices provided OA of 0.87 to 0.96. Estimated grass weed area ranged from 56 to 71%, 43 to 47%, and 69 to 80% of the field in the three locations, respectively, with per-class accuracies from 0.87 to 0.94. NDVI was the most efficient vegetation index, with a highly accurate performance in all locations. Our results suggest that mapping grass weed patches in wheat is feasible with high-resolution satellite imagery or aerial photography acquired 2 to 3 wk before crop senescence.

Author(s):  
Abdon Francisco Aureliano Netto ◽  
Rodrigo Nogueira Martins ◽  
Guilherme Silverio Aquino De Souza ◽  
Fernando Ferreira Lima Dos Santos ◽  
Jorge Tadeu Fim Rosas

This study aimed to modify a webcam by replacing its near-infrared (NIR) blocking filter to a low-cost red, green and blue (RGB) filter for obtaining NIR images and to evaluate its performance in two agricultural applications. First, the sensitivity of the webcam to differentiate normalized difference vegetation index (NDVI) levels through five nitrogen (N) doses applied to the Batatais grass (Paspalum notatum Flugge) was verified. Second, images from maize crops were processed using different vegetation indices, and thresholding methods with the aim of determining the best method for segmenting crop canopy from the soil. Results showed that the webcam sensor was capable of detecting the effect of N doses through different NDVI values at 7 and 21 days after N application. In the second application, the use of thresholding methods, such as Otsu, Manual, and Bayes when previously processed by vegetation indices showed satisfactory accuracy (up to 73.3%) in separating the crop canopy from the soil.


Silva Fennica ◽  
2019 ◽  
Vol 53 (2) ◽  
Author(s):  
Petri Forsström ◽  
Jouni Peltoniemi ◽  
Miina Rautiainen

Accurate mapping of the spatial distribution of understory species from spectral images requires ground reference data which represent the prevailing phenological stage at the time of image acquisition. We measured the spectral bidirectional reflectance factors (BRFs, 350–2500 nm) at varying view angles for lingonberry ( L.) and blueberry ( L.) throughout the growing season of 2017 using Finnish Geospatial Research Institute’s FIGIFIGO field goniometer. Additionally, we measured spectra of leaves and berries of both species, and flowers of lingonberry. Both lingonberry and blueberry showed seasonality in visible and near-infrared spectral regions which was linked to occurrences of leaf growth, flowering, berrying, and leaf senescence. The seasonality of spectra differed between species due to different phenologies (evergreen vs. deciduous). Vegetation indices, normalized difference vegetation index (NDVI), moisture stress index (MSI), plant senescence reflectance index (PSRI), and red-edge inflection point (REIP2), showed characteristic seasonal trends. NDVI and PSRI were sensitive to the presence of flowers and berries of lingonberry, while with blueberry the effects were less evident. Off-nadir observations supported differentiating the dwarf shrub species from each other but showed little improvement for detection of flowers and berries. Lingonberry and blueberry can be identified by their spectral signatures if ground reference data are available over the entire growing season. The spectral data measured in this study are reposited in the publicly open SPECCHIO Spectral Information System.Vaccinium vitis-idaeaVaccinium myrtillus


2012 ◽  
Vol 31 (3) ◽  
pp. 5-23
Author(s):  
Maciej Dzieszko ◽  
Piotr Dzieszko ◽  
Sławomir Królewicz

Abstract . Knowledge of how land cover has changed over time improve assessments of the changes in the future. Wide availability of remote sensed data and relatively low cost of their acquisition make them very attractive data source for Geographical Information Systems (GIS). The main goal of this paper is to prepare, run and evaluate image classification using a block of raw aerial images obtained from Digital Mapping Camera (DMC). Classification was preceded by preparation of raw images. It contained geometric and radiometric correction of every image in block. Initial images processing lead to compensate their brightness differences. It was obtained by calculating two vegetation indices: Normalized Difference Vegetation Index (NDVI) and Green Normalized Vegetation Index (gNDVI). These vegetation indices were the foundation of image classification. PCI Geomatics Geomatica 10.2 and Microimages TNT Mips software platforms were used for this purpose.


2020 ◽  
Vol 12 (1) ◽  
pp. 136 ◽  
Author(s):  
Athos Agapiou

Subsurface targets can be detected from space-borne sensors via archaeological proxies, known in the literature as cropmarks. A topic that has been limited in its investigation in the past is the identification of the optimal spatial resolution of satellite sensors, which can better support image extraction of archaeological proxies, especially in areas with spectral heterogeneity. In this study, we investigated the optimal spatial resolution (OSR) for two different cases studies. OSR refers to the pixel size in which the local variance, of a given area of interest (e.g., archaeological proxy), is minimized, without losing key details necessary for adequate interpretation of the cropmarks. The first case study comprises of a simulated spectral dataset that aims to model a shallow buried archaeological target cultivated on top with barley crops, while the second case study considers an existing site in Cyprus, namely the archaeological site of “Nea Paphos”. The overall methodology adopted in the study is composed of five steps: firstly, we defined the area of interest (Step 1), then we selected the local mean-variance value as the optimization criterion of the OSR (Step 2), while in the next step (Step 3), we spatially aggregated (upscale) the initial spectral datasets for both case studies. In our investigation, the spectral range was limited to the visible and near-infrared part of the spectrum. Based on these findings, we determined the OSR (Step 4), and finally, we verified the results (Step 5). The OSR was estimated for each spectral band, namely the blue, green, red, and near-infrared bands, while the study was expanded to also include vegetation indices, such as the Simple Ratio (SR), the Atmospheric Resistance Vegetation Index (ARVI), and the Normalized Difference Vegetation Index (NDVI). The outcomes indicated that the OSR could minimize the local spectral variance, thus minimizing the spectral noise, and, consequently, better support image processing for the extraction of archaeological proxies in areas with high spectral heterogeneity.


Author(s):  
M. Ustuner ◽  
F. B. Sanli ◽  
S. Abdikan ◽  
M. T. Esetlili ◽  
Y. Kurucu

Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1830
Author(s):  
Yongqian Ding ◽  
Yizhuo Jiang ◽  
Hongfeng Yu ◽  
Chuanlei Yang ◽  
Xueni Wu ◽  
...  

A coefficient CW, which was defined as the ratio of NIR (near infrared) to the red reflected spectral response of the spectrometer, with a standard whiteboard as the measuring object, was introduced to establish a method for calculating height-independent vegetation indices (VIs). Two criteria for designing the spectrometer based on an active light source were proposed to keep CW constant. A designed spectrometer, which was equipped with an active light source, adopting 730 and 810 nm as the central wavelength of detection wavebands, was used to test the Normalized Difference Vegetation Index (NDVI) and Ratio Vegetation Index (RVI) in wheat fields with two nitrogen application rate levels (NARLs). Twenty test points were selected in each kind of field. Five measuring heights (65, 75, 85, 95, and 105 cm) were set for each test point. The mean and standard deviation of the coefficient of variation (CV) for NDVI in each test point were 3.85% and 1.39% respectively, the corresponding results for RVI were 2.93% and 1.09%. ANOVA showed the measured VIs possessed a significant ability to discriminate the NARLs and had no obvious correlation with the measurement heights. The experimental results verified the feasibility and validity of the method for measuring height-independent VIs.


2020 ◽  
Vol 12 (11) ◽  
pp. 1828
Author(s):  
Jerry Davis ◽  
Leonhard Blesius ◽  
Michelle Slocombe ◽  
Suzanne Maher ◽  
Michael Vasey ◽  
...  

The benefits of meadow restoration can be assessed by understanding the connections among geomorphology, hydrology, and vegetation; and multispectral imagery captured from unpiloted aerial systems (UASs) can provide the best method in terms of cost, resolution, and support for vegetation indices. Our field studies were conducted on northern Sierra montane meadows (with ≤70 km2 watershed area). The meadows exist in various stages of ecological restoration. Field survey methods included GPS + laser-leveling channel survey, cross-sections, LiDAR, vegetation sampling, soil measurements, and UAS imaging. A sensor captured calibrated blue (465–485 nm), green (550–570 nm), red (663–673 nm), near infrared (NIR) (820–860 nm), and red-edge (712–722 nm) bands at 5.5 cm resolution (as well as thermal at 81 cm resolution) and provided multispectral images and derivative vegetation indices such as the normalized difference vegetation index (NDVI) and red-edge chlorophyll index (Clre). This fine-scale imagery extended our morphometric assessment of post-restoration channel bedform patterns and sinuosity related to Carex-influenced soil properties and Salix influence, and also documented groundwater-related effects via Carex patterns evident from spring snowmelt images, as well as NDVI and Clre (derived from spring and summer images) in growing to senescent phenological stages. Carex was significantly associated with low bulk density and high soil moisture, NDVI, and Clre in low-lying areas, and channel sinuosity was significantly associated with willow influence. Our methods can be applied by restoration managers to assess where projects are threatened by renewed incision and to document levels of carbon sequestration significant to addressing climate change.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2359 ◽  
Author(s):  
Robson Argolo dos Santos ◽  
Everardo Chartuni Mantovani ◽  
Roberto Filgueiras ◽  
Elpídio Inácio Fernandes-Filho ◽  
Adelaide Cristielle Barbosa da Silva ◽  
...  

Surface reflectance data acquisition by unmanned aerial vehicles (UAVs) are an important tool for assisting precision agriculture, mainly in medium and small agricultural properties. Vegetation indices, calculated from these data, allow one to estimate the water consumption of crops and predict dry biomass and crop yield, thereby enabling a priori decision-making. Thus, the present study aimed to estimate, using the vegetation indices, the evapotranspiration (ET) and aboveground dry biomass (AGB) of the maize crop using a red–green-near-infrared (RGNIR) sensor onboard a UAV. For this process, 15 sets of images were captured over 61 days of maize crop monitoring. The images of each set were mosaiced and subsequently subjected to geometric correction and conversion from a digital number to reflectance to compute the vegetation indices and basal crop coefficients (Kcb). To evaluate the models statistically, 54 plants were collected in the field and evaluated for their AGB values, which were compared through statistical metrics to the data estimated by the models. The Kcb values derived from the Soil-Adjusted Vegetation Index (SAVI) were higher than the Kcb values derived from the Normalized Difference Vegetation Index (NDVI), possibly due to the linearity of this model. A good agreement (R2 = 0.74) was observed between the actual transpiration of the crop estimated by the Kcb derived from SAVI and the observed AGB, while the transpiration derived from the NDVI had an R2 of 0.69. The AGB estimated using the evaporative fraction with the SAVI model showed, in relation to the observed AGB, an RMSE of 0.092 kg m−2 and an R2 of 0.76, whereas when using the evaporative fraction obtained through the NDVI, the RMSE was 0.104 kg m−2, and the R2 was 0.74. An RGNIR sensor onboard a UAV proved to be satisfactory to estimate the water demand and AGB of the maize crop by using empirical models of the Kcb derived from the vegetation indices, which are an important source of spatialized and low-cost information for decision-making related to water management in agriculture.


NIR news ◽  
2017 ◽  
Vol 28 (8) ◽  
pp. 4-10
Author(s):  
Wendy W Kuhne ◽  
Martine C Duff ◽  
Katie Salvaggio ◽  
Nancy V Halverson ◽  
Ronald Staggs

Desert, desert-scrub, savanna and sandy beach, and lakeshore environments can be particularly tricky in terms of camouflage selection due to their low vegetative density. Therefore many companies focus on the development of paint color schemes that match the vegetation and the desert soils/sands. However another factor in the consideration of which camouflage to purchase may lie in what the animal can see. White-tailed deer and similar large mammals have been shown to have three classes of photo pigments that are sensitive to the range of blue to yellow-green during day light hours and blue to blue-green at night. Six commercially-available camouflage patterns were investigated to determine if the reflectance characteristics measured in the laboratory and under field conditions were elevated in the blue range and perhaps more likely to be seen by wildlife. The camouflage patterns were evaluated against standard vegetation indices including normalized difference vegetation index, soil adjusted vegetation index, enhanced vegetation index, and simple ratio. Only two of the patterns (S4 and S5) possessed a reflectance more like vegetation. Patterns S4, S6, S3, and S2 all showed only slight elevations in the blue wavelength range which could only have been detected by near infrared measurements instead of visual observation by the human eye.


2021 ◽  
Vol 64 (3) ◽  
pp. 879-891
Author(s):  
Sindhuja Sankaran ◽  
Afef Marzougui ◽  
J. Preston Hurst ◽  
Chongyuan Zhang ◽  
James C. Schnable ◽  
...  

HighlightsVegetation indices (NDVI, GNDVI, and SAVI) extracted from high-resolution satellite imagery were significantly associated with vegetation indices extracted from UAV imagery.High-resolution satellite data can be used to predict maize yield at breeding plot scale.Breeding plot sizes and the variability between maize genotypes may be associated with prediction accuracies.Abstract. The recent availability of high spatial and temporal resolution satellite imagery has widened its applications in agriculture. Plant breeding and genetics programs are currently adopting unmanned aerial vehicle (UAV) based imagery data as a complement to ground data collection. With breeding trials across multiple geographic locations, UAV imaging is not always convenient. Hence, we anticipate that, similar to UAV imaging, phenotyping of individual test plots from high-resolution satellite imagery may also provide value to plant genetics and breeding programs. In this study, high spatial resolution satellite imagery (~38 to 48 cm pixel-1) was compared to imagery acquired using a UAV for its ability to phenotype maize grown in two-row and six-row breeding plots. Statistics (mean, median, sum) of color (red, green, blue), near-infrared, and vegetation indices such as normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), and soil adjusted vegetation index (SAVI) were extracted from imagery from both sources (UAV and satellite) for comparison at three time points. In general, a strong correlation between satellite and UAV imagery extracted NDVI, GNDVI, and SAVI features (especially with mean and median statistics, p < 0.001) was observed at different time points. The correlation of both UAV and satellite image features with yield potential was maximum (p < 0.001) at the third time point (milk/dough growth stages). For example, Pearson’s correlation coefficients between mean NDVI, GNDVI, and SAVI features with yield potential were 0.52, 0.54, and 0.51 for data derived from UAV imagery, and 0.34, 0.41, and 0.40 for data derived from satellite imagery, respectively. Machine learning algorithms, including least absolute shrinkage and selection operator (Lasso) regression, were evaluated for yield prediction using vegetation index features that were significantly correlated with observed yield. The relationship between satellite imagery with crop performance can be a function of plot size in addition to crop variability. Nevertheless, with the ongoing improvement of satellite technologies, there is a possibility for the integration of satellite data into breeding programs, thus improving phenotyping efficiencies. Keywords: Image processing, Machine learning, Plant breeding, Statistical analysis, Unmanned aerial vehicles.


Sign in / Sign up

Export Citation Format

Share Document