The variety of nilpotent elements and invariant polynomial functions on the special algebra Sn

2015 ◽  
Vol 27 (3) ◽  
Author(s):  
Junyan Wei ◽  
Hao Chang ◽  
Xin Lu

AbstractIn the study of the variety of nilpotent elements in a Lie algebra, Premet conjectured that this variety is irreducible for any finite dimensional restricted Lie algebra. In this paper, with the assumption that the ground field is algebraically closed of characteristic

Author(s):  
Jon F. Carlson ◽  
Eric M. Friedlander ◽  
Julia Pevtsova

AbstractWe introduce and investigate a functorial construction which associates coherent sheaves to finite dimensional (restricted) representations of a restricted Lie algebra


2003 ◽  
Vol 74 (3) ◽  
pp. 313-330 ◽  
Author(s):  
Donald W. Barnes ◽  
Daniel Groves

AbstractFollowing the analogy with group theory, we define the Wielandt subalgebra of a finite-dimensional Lie algebra to be the intersection of the normalisers of the subnormal subalgebras. In a non-zero algebra, this is a non-zero ideal if the ground field has characteristic 0 or if the derived algebra is nilpotent, allowing the definition of the Wielandt series. For a Lie algebra with nilpotent derived algebra, we obtain a bound for the derived length in terms of the Wielandt length and show this bound to be best possible. We also characterise the Lie algebras with nilpotent derived algebra and Wielandt length 2.


2019 ◽  
Vol 18 (03) ◽  
pp. 1950056
Author(s):  
Cong Chen

In the late 1980s, Premet conjectured that the nilpotent variety of any finite dimensional restricted Lie algebra over an algebraically closed field of characteristic [Formula: see text] is irreducible. This conjecture remains open, but it is known to hold for a large class of simple restricted Lie algebras, e.g. for Lie algebras of connected algebraic groups, and for Cartan series [Formula: see text] and [Formula: see text]. In this paper, with the assumption that [Formula: see text], we confirm this conjecture for the minimal [Formula: see text]-envelope [Formula: see text] of the Zassenhaus algebra [Formula: see text] for all [Formula: see text].


2001 ◽  
Vol 63 (3) ◽  
pp. 571-591 ◽  
Author(s):  
A. A. BARANOV ◽  
A. E. ZALESSKII

In this paper we study representations of finite dimensional Lie algebras. In this case representations are not necessarily completely reducible. As the general problem is known to be of enormous complexity, we restrict ourselves to representations that behave particularly well on Levi subalgebras. We call such representations plain (Definition 1.1). Informally, we show that the theory of plain representations of a given Lie algebra L is equivalent to representation theory of finitely many finite dimensional associative algebras, also non-semisimple. The sense of this is to distinguish representations of Lie algebras that are of complexity comparable with that of representations of associative algebras. Non-plain representations are intrinsically much more complex than plain ones. We view our work as a step toward understanding this complexity phenomenon.We restrict ourselves also to perfect Lie algebras L, that is, such that L = [L, L]. In our main results we assume that L is perfect and [sfr ][lfr ]2-free (which means that L has no quotient isomorphic to [sfr ][lfr ]2). The ground field [ ] is always assumed to be algebraically closed and of characteristic 0.


2007 ◽  
Vol 75 (1) ◽  
pp. 27-44 ◽  
Author(s):  
S. Siciliano ◽  
Th. Weigel

In this note we analyse the analogy between m-potent and p-central restricted Lie algebras and p-groups. For restricted Lie algebras the notion of m-potency has stronger implications than for p-groups (Theorem A). Every finite-dimensional restricted Lie algebra  is isomorphic to for some finite-dimensional p-central restricted Lie algebra (Proposition B). In particular, for restricted Lie algebras there does not hold an analogue of J.Buckley's theorem. For p odd one can characterise powerful restricted Lie algebras in terms of the cup product map in the same way as for finite p-groups (Theorem C). Moreover, the p-centrality of the finite-dimensional restricted Lie algebra  has a strong implication on the structure of the cohomology ring H•(,) (Theorem D).


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


Author(s):  
MÁTYÁS DOMOKOS ◽  
VESSELIN DRENSKY

AbstractThe problem of finding generators of the subalgebra of invariants under the action of a group of automorphisms of a finite-dimensional Lie algebra on its universal enveloping algebra is reduced to finding homogeneous generators of the same group acting on the symmetric tensor algebra of the Lie algebra. This process is applied to prove a constructive Hilbert–Nagata Theorem (including degree bounds) for the algebra of invariants in a Lie nilpotent relatively free associative algebra endowed with an action induced by a representation of a reductive group.


Author(s):  
DMITRI I. PANYUSHEV ◽  
OKSANA S. YAKIMOVA

AbstractLet 𝔮 be a finite-dimensional Lie algebra. The symmetric algebra (𝔮) is equipped with the standard Lie–Poisson bracket. In this paper, we elaborate on a surprising observation that one naturally associates the second compatible Poisson bracket on (𝔮) to any finite order automorphism ϑ of 𝔮. We study related Poisson-commutative subalgebras (𝔮; ϑ) of 𝒮(𝔮) and associated Lie algebra contractions of 𝔮. To obtain substantial results, we have to assume that 𝔮 = 𝔤 is semisimple. Then we can use Vinberg’s theory of ϑ-groups and the machinery of Invariant Theory.If 𝔤 = 𝔥⊕⋯⊕𝔥 (sum of k copies), where 𝔥 is simple, and ϑ is the cyclic permutation, then we prove that the corresponding Poisson-commutative subalgebra (𝔮; ϑ) is polynomial and maximal. Furthermore, we quantise this (𝔤; ϑ) using a Gaudin subalgebra in the enveloping algebra 𝒰(𝔤).


2013 ◽  
Vol 89 (2) ◽  
pp. 234-242 ◽  
Author(s):  
DONALD W. BARNES

AbstractFor a Lie algebra $L$ over an algebraically closed field $F$ of nonzero characteristic, every finite dimensional $L$-module can be decomposed into a direct sum of submodules such that all composition factors of a summand have the same character. Using the concept of a character cluster, this result is generalised to fields which are not algebraically closed. Also, it is shown that if the soluble Lie algebra $L$ is in the saturated formation $\mathfrak{F}$ and if $V, W$ are irreducible $L$-modules with the same cluster and the $p$-operation vanishes on the centre of the $p$-envelope used, then $V, W$ are either both $\mathfrak{F}$-central or both $\mathfrak{F}$-eccentric. Clusters are used to generalise the construction of induced modules.


1984 ◽  
Vol 27 (3) ◽  
pp. 313-319 ◽  
Author(s):  
P. Holgate

The definitions of finite dimensional baric, train, and special train algebras, and of genetic algebras in the senses of Schafer and Gonshor (which coincide when the ground field is algebraically closed, and which I call special triangular) are given in Worz-Busekros's monograph [8]. In [6] I introduced applications requiring infinite dimensional generalisations. The elements of these algebras were infinite linear forms in basis elements a0, a1,… and complex coefficients such that In this paper I consider only algebras whose elements are forms which only a finite number of the xi are non zero.


Sign in / Sign up

Export Citation Format

Share Document