Incentive and Architecture of Multi-Band Enabled Small Cell and UE for Up-/Down-Link and Control-/User-Plane Splitting for 5G Mobile Networks

Frequenz ◽  
2017 ◽  
Vol 71 (1-2) ◽  
pp. 95-118 ◽  
Author(s):  
Rony Kumer Saha ◽  
Chaodit Aswakul

Abstract In this paper, a multi-band enabled femtocell base station (FCBS) and user equipment (UE) architecture is proposed in a multi-tier network that consists of small cells, including femtocells and picocells deployed over the coverage of a macrocell for splitting uplink and downlink (UL/DL) as well as control-plane and user-plane (C-/U-plane) for 5G mobile networks. Since splitting is performed at the same FCBS, we define this architecture as the same base station based split architecture (SBSA). For multiple bands, we consider co-channel (CC) microwave and different frequency (DF) 60 GHz millimeter wave (mmWave) bands for FCBSs and UEs with respect to the microwave band used by their over-laid macrocell base station. All femtocells are assumed to be deployed in a 3-dimensional multi-storage building. For CC microwave band, cross-tier CC interference of femtocells with macrocell is avoided using almost blank subframe based enhanced inter-cell interference coordination techniques. The co-existence of CC microwave and DF mmWave bands for SBSA on the same FCBS and UE is first studied to show their performance disparities in terms of system capacity and spectral efficiency in order to provide incentives for employing multiple bands at the same FCBS and UE and identify a suitable band for routing decoupled UL/DL or C-/U-plane traffic. We then present a number of disruptive architectural design alternatives of multi-band enabled SBSA for 5G mobile networks for UL/DL and C-/U-plane splitting, including a disruptive and complete splitting of UL/DL and C-/U-plane as well as a combined UL/DL and C-/U-plane splitting, by exploiting dual connectivity on CC microwave and DF mmWave bands. The outperformances of SBSA in terms of system level capacity, average spectral efficiency, energy efficiency, and control-plane overhead traffic capacity in comparison with different base stations based split architecture (DBSA) are shown. Finally, a number of technical and business perspectives as well as key research issues of SBSA are discussed.

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3825 ◽  
Author(s):  
Rony Kumer Saha

In this paper, we propose a technique to share the licensed spectrums of all mobile network operators (MNOs) of a country with in-building small cells per MNO by exploiting the external wall penetration loss of a building and introducing the time-domain eICIC technique. The proposed technique considers allocating the dedicated spectrum Bop per MNO only its to outdoor macro UEs, whereas the total spectrum of all MNOs of the country Bco to its small cells indoor per building such that technically any small indoor cell of an MNO can have access to Bco instead of merely Bop assigned only to the MNO itself. We develop an interference management strategy as well as an algorithm for the proposed technique. System-level capacity, spectral efficiency, and energy efficiency performance metrics are derived, and a generic model for energy efficiency is presented. An optimal amount of small indoor cell density in terms of the number of buildings L carrying these small cells per MNO to trade-off the spectral efficiency and the energy efficiency is derived. With the system-level numerical and simulation results, we define an optimal value of L for a dense deployment of small indoor cells of an MNO and show that the proposed spectrum sharing technique can achieve massive indoor capacity, spectral efficiency, and energy efficiency for the MNO. Finally, we demonstrate that the proposed spectrum sharing technique could meet both the spectral efficiency and the energy efficiency requirements for 5G mobile networks for numerous traffic arrival rates to small indoor cells per building of an MNO.


2018 ◽  
Vol 25 (2) ◽  
pp. 4-7 ◽  
Author(s):  
Chin-Kuo Jao ◽  
Chun-Yen Wang ◽  
Ting-Yu Yeh ◽  
Chun-Chia Tsai ◽  
Li-Chung Lo ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 748
Author(s):  
Rony Saha

In this paper, we present two spectrum sharing techniques for a multisystem, incorporating an integrated satellite-mobile system and an autonomous terrestrial-mobile system (iSMS/aTMS), namely orthogonal spectrum sharing (OSS) and non-orthogonal spectrum sharing (nOSS) techniques. aTMS consists of numerous small cells deployed in several buildings, and iSMS consists of a satellite station integrated with complementary ground component (CGC) stations deployed within buildings. By exploiting the high external wall penetration loss of a building, the iSMS spectrum is shared with small cells per building in OSS, and small cells per 3-dimensional (3D) cluster per building in nOSS. An interference management scheme, to avoid interference in apartments with collocated CGC stations and small cells, was developed and an optimal number of almost blank subframes (ABSs) per ABS pattern period (APP) was defined. System-level capacity, spectral efficiency, and energy efficiency performance metrics were derived. Furthermore, we present an algorithm for both OSS and nOSS techniques. With extensive simulation and numerical analysis, it is shown that the proposed nOSS significantly outperforms OSS in terms of spectral efficiency and energy efficiency, and both techniques can meet the expected spectral efficiency and energy efficiency requirements for the fifth-generation (5G) mobile networks.


2021 ◽  
Vol 20 (4) ◽  
pp. 46-53
Author(s):  
Adrián STOSIL ◽  
◽  
Marcel VOLOŠIN ◽  
Taras MAKSYMYUK ◽  
Gabriel BUGÁR ◽  
...  

Mobile broadband networks can provide a reliable and flexible communication channel. User requirements can come with different levels of specificity. The widespread application of unmanned aerial vehicles (UAVs, commonly known as a drones) introduces possibilities of use in modern upcoming mobile networks; for example, 5G and 6G, to achieve and support various use cases from low latency to high bandwidth scenarios. For reliable command and control communication, mobile networks can provide flexible differentiated QoS matching the needed reliability, latency and throughput. Many end user equipment connected to the same base station can overload the system and may cause the network to be unavailable. Also, in case the fixed infrastructure is partially decommissioned, destroyed or the network is congested and the system capacity is not sufficient, it is appropriate to use autonomous drones as mobile base stations to ensure well signal coverage of the affected area. The aim of this work is to overview of optimization algorithm developed to provide the best drones’ locations. We compared the techniques of minimization of the number of drones needed to cover users located in a given area with respect to the time required to calculate the optimal positions of the drones.


Author(s):  
Ali Othman Al Janaby

The 3GPP release for 5G (R15) assigns each User Equipment (UE) a radio beam by employing Massive Multi-User MU-Multiple-Input-Multiple-Output (MIMO) technology. Each beam carries, at the downlink, a data rate according to the modulation and coding scheme (MCS) assigned by the base station (BS). For the limited existence of active UEs and during vacant traffic or standby UEs, the assigned beams will be transmitted, but not to any UE. This paper proposes a new scheme that consolidates vacant beams of inactive UEs, to the adjacent beam of the active UE or UE at the cell edge to duplicate the bandwidth of the new beam. The proposed scheme increases the level of desired modulation and coding scheme (MCS) to a higher scheme and hence enhances the spectral efficiency (SE) of the 5G mobile networks. Specifically, the BS consolidates (combines) multiple radio beams along with the assigned beam during vacant traffic. More than two beams are consolidated in particular to the active UE to increase the bit rate by assigning higher MCS. The simulation evaluation depicted that the performance of beams consolidation provides a gain of 3.5 dB above than the state before beams consolidation. Moreover, more than 40 % improvement in UE throughput is achieved.


Sign in / Sign up

Export Citation Format

Share Document