Preparation of anhydrite from eggshell via pyrolysis

2018 ◽  
Vol 7 (2) ◽  
pp. 139-146 ◽  
Author(s):  
Nuchnapa Tangboriboon ◽  
Wanitcha Unjan ◽  
Watchara Sangwan ◽  
Anuvat Sirivat

AbstractCalcium sulfate dihydrate (CaSO4·2H2O) was prepared from the chemical reaction between calcium carbonate from duck eggshell and sulfuric acid at 25°C. The CaSO4·2H2O was dried in an oven at 110°C and transformed into calcium sulfate hemihydrate or plaster of Paris (CaSO4·0.5H2O). The CaSO4·0.5H2O was calcined at 700, 800 and 900°C and transformed into anhydrite or anhydrous calcium sulfate (CaSO4). The raw material used in this research was the duck eggshell, the waste eggshell generated from food processing industries. The obtained anhydrous calcium sulfate or anhydrite has true density, color, specific surface area, pore diameter and particle size equal to 2.95 g/cm3, white powder, 3.57 m2/g, 96.98 Å and 3.983 μm, respectively. In addition, other characteristics, microstructures, phase transformation and physical properties of raw materials and calcium sulfates were investigated and reported here using X-ray fluorescencemeter, Fourier transform infrared spectrometer, differential thermal analyzer, thermogravimetric analysis, scanning electron microscope, X-ray diffractometer, pycnometer method and Brunauer-Emmett-Teller.

2021 ◽  
Vol 55 (3) ◽  
Author(s):  
Hongbin Tan ◽  
Xiaoling Ma ◽  
Faqin Dong ◽  
Yufeng Li ◽  
Jinming Wang ◽  
...  

Complex jarosite waste was obtained from zinc metal hydrometallurgical process, which contained gypsum and ammonium jarosite (NH4Fe3(SO4)2(OH)6). The influence of impurity ions (Fe3+ and NH4+) on the calcium sulfate hemihydrate (HH) morphology was studied using pure gypsum as the raw material, respectively. HH crystals with a high aspect ratio were obtained without the impurity ions. The diameter increased and the aspect ratio of the HH decreased, while the addition of iron sulfate and ammonia sulfate increased. Ammonium iron (NH4+) can be removed by using calcium oxide to decompose the ammonium jarosite in the waste and then to wash the sediment with tap water. The sediment (calcified jarosite sediment) mainly contained CaSO4·2H2O and Fe(OH)3. The influence of cultivating time on HH crystals growth was researched by using the sediment as raw materials. The diameter of the whiskers increased, while the hydrothermal time increased. The whiskers were obtained, with high a aspect ratio (10–60), large diameter (1–4 µm) and smooth surface, after the sediment was treated at 140 °C for 6 h in pH = 5 solution.


2013 ◽  
Vol 1 (1) ◽  
pp. 21 ◽  
Author(s):  
Parviz Holakooei ◽  
Abbas Abed-Esfahani ◽  
Samad Samanian ◽  
Hesam Aslani

The raised substrates of gilding decorations, called lāyachīnīī in Persian, were widely used throughout the Safavid period (1501-1736 AD) in Iran. This paper presents the first analytical data obtained from the lāyachīnīs of three seventeenth century royal Safavid buildings (ʿAlī- Qāpū, Chihil-Sutūn, and Hasht-Bihisht) in Isfahan, Iran, using energy dispersive X-ray spectroscopy, scanning electron microscope, Xray powder diffraction, and thin layer chromatography. According to the analytical data, different forms of calcium sulfate (dihydrate, β-hemihydrate, and anhydrite), the red iron oxides, and a proteinaceous binder (probably animal glue) are the main constituents of the raised lāyachīnī substrates. The results show that a dry mixture of the plaster of Paris and the red iron oxides are mixed with diluted animal glue to obtain a slurry to be applied in several layers, one top of the another, to achieve the raised substrates. This technique is similar to those European raised pastiglia substrates although the method of the preparation in the Persian technique is different from the European one.


2014 ◽  
Vol 1025-1026 ◽  
pp. 820-823 ◽  
Author(s):  
Victoria Petropavlovskaya ◽  
Аleksandr Buryanov ◽  
Тatyana Novichenkova

In article the method of formation of structure of disperse systems on a basis of calcium sulfate dihydrate is described. It is based on various concentration of a solution at a surface of particles of the various size. As raw materials it was used calcium sulfate dihydrate − a withdrawal of ceramic manufacture. The picked up structure of particles in the sizes was applied. For acknowledgement of the offered method following researches have been carried out on: solubilities of powders, to deformations of a raw mix, durability of structure. The way of reception of gypsum products allows to simplify technology. Energy expenses decrease. Burning is excluded and the grinding is reduced.


Cerâmica ◽  
2010 ◽  
Vol 56 (338) ◽  
pp. 156-161 ◽  
Author(s):  
M. H Aly ◽  
I. S Ismael ◽  
F Bondioli

The aim of this work is not only the synthesis of black ceramic pigment with spinel structure using local and inexpensive minerals (chromite and manganese ores) but also throw some light on the relations between the structure and the colour of obtained pigment. Ultimate utilization spinel solid solution in ceramic materials is mostly due to their structure characteristics, their thermal and chemical stability. In this study colour pigments were ned by calcinations at 1250 ºC starting from a mixture of chromite and manganese oxide. Different compositions were tested containing 30, 40 and 50 wt.% of manganese oxide (low and high content respectively). The phase composition and microstructure characterization of both raw material and obtained pigments were evaluated by X-ray diffraction, X-ray fluorescence, polarizing microscope and scanning electron microscope. Furthermore, the colour measurements of the obtained pigments and tiles were evaluated. Composition of all pigments reveal the spinel structure with Cr2FeO4; hematite was also recorded in the mixture of low manganese. The degree of lightness is relatively same in the pigments mixtures of both manganese types. However, tiles could be considered lightness compared with its pigments, especially of the high manganese type. The solid state calcinations reactions are indeed able to form intense brown pigments that can be used as a stain for industrial ceramic applications. The production of less expensive black ceramic pigments from low cost and less pure raw materials that can be utilized in Egypt to substitute for the imported pure oxides or salts is proved superior performance for producing painted pigments.


2014 ◽  
Vol 936 ◽  
pp. 986-991
Author(s):  
Chuan Hui Gao ◽  
Li Ding ◽  
Yu Min Wu ◽  
Chuan Xing Wang ◽  
Jun Xu

A low-cost raw material, bittern obtained from the production process of sea salt, was used to prepare magnesium oxysulfate hydrate (MgSO4·5Mg (OH)2·2H2O, abbreviated as 152MOS) whiskers via hydrothermal synthesis with ammonia and magnesium sulfate as the other starting raw materials. The bittern was firstly filtered and then used directly without de-coloring. X-ray powder diffraction (XRD), transmission electron microscope (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM) were employed to investigate the composition and morphology of the products. It was found that the 152MOS whiskers synthesized from bittern at 190°C for 3 hours exhibited fanlike morphology. The formation of the fanlike whiskers was inhibited and most of the whiskers presented as single fibers when ethanol was used as crystal control agent in the hydrothermal process. From the two-dimensional steps observed at tips of the whiskers, a possible growth mechanism was speculated that it was the extension of dislocations that made the growth of the whiskers.


Clay Minerals ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 621-641 ◽  
Author(s):  
Ágnes Gál ◽  
Corina Ionescu ◽  
Mátyás Bajusz ◽  
Vlad A. Codrea ◽  
Volker Hoeck ◽  
...  

ABSTRACTSecond-century CE (common era) household pottery sherds found in the city ofNapoca(present day Cluj-Napoca, Romania) in Roman Dacia were investigated by polarized light optical microscopy, X-ray powder diffraction, Fourier-transform infrared spectroscopy and cold field emission scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy to obtain information on technology, raw materials and site of production. Compositionally, all samples are similar with comparable fine and semi-fine microstructures and oriented microtextures. Optically, there is a gradual transition from microcrystalline to an amorphous illitic-muscovitic matrix. The small aplastic inclusions are mostly quartz and feldspar. Fine-grained carbonate aggregates are distributed inhomogeneously in the ceramic body. Well-preserved Middle Miocene foraminifera tests are characteristic of the ceramics. The gradual thermal changes of the matrix and the newly formed phases upon firing, such as ‘ceramic melilite’, Fe-gehlenite, clinopyroxene, glass, hematite and some maghemite support inferences regarding the technological constraints in producing the pottery. The firing took place in a mostly oxidizing atmosphere and the temperature extended from at least 850°C to >900°C. The Middle Miocene marly clay from the area surrounding the site shows similar mineralogical and micropalaeontological contents to those of the ceramic specimens and is the best candidate for the raw material used for local production of the Roman pottery.


2015 ◽  
Vol 659 ◽  
pp. 216-220 ◽  
Author(s):  
Achanai Buasri ◽  
Thaweethong Inkaew ◽  
Laorrut Kodephun ◽  
Wipada Yenying ◽  
Vorrada Loryuenyong

The use of waste materials for producing biodiesel via transesterification has been of recent interest. In this study, the pork bone was used as the raw materials for natural hydroxyapatite (NHAp) catalyst. The calcination of animal bone was conducted at 900 °C for 2 h. The raw material and the resulting heterogeneous catalyst were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and the Brunauer-Emmett-Teller (BET) method. The effects of reaction time, microwave power, methanol/oil molar ratio, catalyst loading and reusability of catalyst were systematically investigated. The optimum conditions, which yielded a conversion of oil of nearly 94%, were reaction time 5 min and microwave power 800 W. The results indicated that the NHAp catalysts derived from pork bone showed good reusability and had high potential to be used as biodiesel production catalysts under microwave-assisted transesterification of Jatropha Curcas oil with methanol.


CORROSION ◽  
1979 ◽  
Vol 35 (7) ◽  
pp. 304-308 ◽  
Author(s):  
GEORGE H. NANCOLLAS ◽  
WESLEY WHITE ◽  
FELIX TSAI ◽  
LARRY MAS LOW

Abstract A seeded growth method has been used to study the kinetics of crystallization of calcium sulfate dihydrate at various temperatures and at ionic strengths up to 0.6M. Under all conditions, the rate of reaction is proportional to the square of the relative supersaturation and is controlled by a surface process. The same kinetics are applicable for the growth of calcium sulfate hemihydrate at temperatures above 110 C. The organic phosphonates effectively retard scale formation, and diethylenetriaminepenta (methylenephosphonic acid), when present at a concentration as low as 10−7M, completely inhibits the growth of calicum sulfate hemihydrate at 120 C. By assuming that the inhibitor molecules are adsorbed on growth sites on the surface of the crystals, the inhibition can be interpreted in terms of a simple Langmuir adsorption isotherm.


2020 ◽  
Author(s):  
Katarina Šter ◽  
Sabina Kramar

<p>Al-rich mineral resources are one of the essential components for the production of the novel sustainable mineral binders. Belite-sulfoaluminate (BCSA) cements, which are considered as low-carbon and low-energy, allows the substitution of natural raw materials with secondary ones. In East-Southeast European countries (ESEE) there are huge amounts of various industrial and mine residues that are either landfilled or currently have a low recycling rate. These residues are generated from mining activities (mine waste) and as a by product of different types of industry, such as thermal power plants, steel plants or the aluminium industry (slags, ashes, red mud, etc.). Within the framework of the RIS-ALiCE project, in cooperation with 15 project partners from Slovenia, Austria, France, Hungary, Serbia, Bosnia and Herzegovina and Macedonia, a network of relevant stakeholders has been established in the field of currently unused aluminium-containing mine and industrial residues. Inside the created network mine and industrial residues have been mapped and valorised in order to evaluate their suitability for the use in innovative and sustainable low CO<sub>2</sub>-mineral binder production. Aluminium-containing residues are characterized with respect to their chemical, physical and radiological composition using different analytical methods such as X ray fluorescence spectroscopy, ICP optical emission spectrophotometry, gravimetry, X ray powder diffraction, gamma spectroscopy, etc. The long-term activity of network between wastes holders/producers and mineral end users will be enabled via developed Al-rich residues registry, including a study of the potential technological, economic and environmental impacts of applying the innovative methodology of the sustainable secondary raw materials management in ESEE region. Developed registry with the data valuable for both, waste providers as waste users in ESEE region, can be later-on upscaled also to other regions of Europe. It will provide the data on the available and appropriate Al-rich secondary resources, which will enablethe production of innovative low-CO<sub>2 </sub>cements.</p><p><strong>Keywords:</strong> secondary raw material, alternative binders, Al-rich residues, networking, mapping, valorisation, registry.</p>


2012 ◽  
Vol 724 ◽  
pp. 347-350 ◽  
Author(s):  
Qing Wen Duan ◽  
Rong Zhen Liu ◽  
Hai Yun Jin ◽  
Jian Feng Yang ◽  
Zhi Hao Jin

Porous SiC/SiAlON ceramics were fabricated by carbothermal reduction method from raw materials of fly ash and semi coke in nitrogen atmosphere. The results showed that composites were composed by multi-structure of SiC, Ca-SiAlON and AlN phases. With the increase of semi coke contents, the contents of Ca-Sialon increased. The fracture mode of this material was intergranular. The results also showed that micro area hereditary of semi coke particles was observed in the morphology of this material. The morphology of this material was composed by nanosized SiC and plate like Ca-SiAlON. The median pore diameter was affected by the contents of semi coke and increased with the increase of semi coke content.


Sign in / Sign up

Export Citation Format

Share Document