scholarly journals PHENOLOGY, YIELD AND WATER USE EFFICIENCY OF SUNFLOWER IN FUNCTION OF ENVIRONMENT AND NITROGEN / FENOLOGIA, RENDIMIENTO Y EFICIENCIA EN EL USO DEL AGUA EN FUNCION DEL AMBIENTE Y NITRÓGENO / PHÉNOLOGIE, RENDEMENT ET EFFICACITÉ DE L’UTILISATION DE L’EAU EN FONCTION DES ENVIRONS ET DE L’AZOTE CHEZ LE TOURNESOL

Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 111-128
Author(s):  
Víctor M. Olalde G. ◽  
J. Alberto Escalante E. ◽  
Angel A. Mastache L.

SUMMARYDuring the rainy season of 1998, a field experiment was established in Cocula, Guerrero (hot subhumid climate, Awo) and in Montecillo, México (semiarid climate, BS1), to evaluate the effect of nitrogen (0, 10 and 20 g m-2) and environment on phenology, yield and its components, water use efficiency (WUE), and crop evapotranspiration (ETc) and heat units (HU) accumulated during the growth cycle of sunflower (Helianthus annuus L.) cv. Victoria. The crop was planted on June 1 at a density of 7.5 pl m-2 in both climates. In Cocula, maximum and minimum temperatures were more extreme and rainfall was more intense, while soil was poor in total nitrogen, compared with Montecillo. Crop growth, yield and its components, and water use efficiency were affected significantly by the environment, nitrogen and the interaction environment * nitrogen. The crop cycle in the hot environment was 36 days shorter, with a greater accumulation of HU and ETc. Yield and its components and water use efficiency were significantly higher in Cocula. Nitrogen positively affected the evaluated variables. The interactive effect of environment * nitrogen was observed clearly, since in Cocula there was response to the application of nitrogen in most of the variables evaluated, while in Montecillo there was not.

2012 ◽  
Vol 212-213 ◽  
pp. 578-585
Author(s):  
Zhong Wen Yang ◽  
Jun Ying Jin ◽  
Xin Yi Xu

Water stress is an important approach to use water resources efficiently and remit the agricultural water shortage. Hemarthria compressa is one of perennial grasses, a pasture of high quality, which has abundant species resources in China. To explore the response of the growth, yield and water use efficiency(WUE) of Hemarthria compressa under water stress, this study, adapting pot experiment, imposed three water stress degree (LD, MD and SD) treatments and a control treatment on Hemarthria compressa. The data of growth indicators during control period, yield and total water consumption were obtained. The results show a noticeable inhibitory action of water stress on the growth of Hemarthria compressa. Along with the intensifying of water stress, plant height increment, leaf area, total biomass, dry matter of each organ and yield decreased, and the root-shoot ratio increased firstly and inclined to slump finally. Plants under the middle water stress treatment achieved the greatest WUE of 38.25 kg/m3. The first 10d in the water control period was the most sensitive period of the pasture responding to water stress.


Irriga ◽  
2018 ◽  
Vol 21 (2) ◽  
pp. 352
Author(s):  
HIPÓLITO MURGA-ORRILLO ◽  
WELLINGTON FARIAS ARAUJO ◽  
CARLOS ABANTO RODRIGUEZ ◽  
RICARDO MANUEL BARDALES LOZANO ◽  
ROBERTO TADASHI SAKAZAKI ◽  
...  

INFLUÊNCIA DA COBERTURA MORTA NA EVAPOTRANSPIRAÇÃO, COEFICIENTE DE CULTIVO E EFICIÊNCIA DE USO DE ÁGUA DO MILHO CULTIVADO EM CERRADO HIPÓLITO MURGA-ORRILLO1; WELLINGTON FARIAS ARAÚJO2; CARLOS ABANTO-RODRIGUEZ3; ROBERTO TADASHI SAKAZAKI4; RICARDO MANUEL BARDALES-LOZANO5 E ANA ROSA POLO-VARGAS6 1Engenheiro Agrônomo, Prof. Auxiliar, Universidad Nacional Autónoma de Chota, (UNACH), Jr. Gregorio Malca Nº 875- Campus Colpa Matara, Chota, Perú. [email protected] Agrônomo, Prof. Dr. Associado da UFRR/CCA, Boa Vista, RR. [email protected] Florestal, Investigador no Instituto de Investigaciones de la Amazonía Peruana, Carretera Federico Basadre, Km 12,400, Yarinacocha, Ucayali, Perú. [email protected] Agrônomo, Doutorando na UFRR/CCA, Boa Vista, RR. [email protected] Agrônomo, Doutorando na UFRR/Bionorte, Boa Vista, RR. [email protected] Agrônoma, Graduada na Universidad Nacional de Cajamarca, (UNC), Av. Atahualpa Nº 1050- Carretera Cajamarca-Baños del Inca, Cajamarca, Perú. [email protected]  1 RESUMOA irrigação consome grande quantidade de água, sendo importante um adequado manejo da cultura para minimizar esse consumo, maximizando a produção. No intuito de obter informações para o manejo da irrigação, objetivou-se com o presente trabalho determinar a evapotranspiração da cultura (ETc), o coeficiente de cultivo (Kc) e a eficiência do uso de água (EUAg) da cultura de milho, em solo com e sem cobertura, durante os diferentes estádios de desenvolvimento, utilizando lisímetros de drenagem. O experimento foi conduzido no campus Cauamé da Universidade Federal de Roraima, entre 19/04/2014 e 07/08/2014, em Boa Vista, RR. A evapotranspiração de referência (ETo) foi estimada pelo método de Penman-Monteith FAO. Os resultados da ETc do milho, durante o ciclo da cultura, em solo sem e com cobertura foram de 421,5 e 351,0 mm, respectivamente. As médias diárias de ETc foram de 4,1 mm dia-1 para solo sem cobertura e 3,4 mm dia-1 para solo com cobertura. A cobertura do solo propiciou valores diferentes de Kc's para o milho, nos mesmos estádios, em comparação aos Kc’s do solo descoberto. Para o solo descoberto, os Kc’s observados para os estádios fenológicos I, II, III, e IV, foram de 0,40; 0,84; 1,59 e 0,81, respectivamente. Já para solo com cobertura, os Kc’s pelos mesmos estádios em menção foram 0,28; 0,64; 1,49 e 0,48, respectivamente. A EUAg para solo com cobertura foi 1,77 kg m-3 e para solo sem cobertura foi 1,65 kg m-3. Estes resultados mostram que a cobertura morta no solo influenciou no consumo hídrico do milho durante todo seu ciclo. Palavras-chave: Zea mays. Irrigação. Solo coberto. Consumo hídrico.  MURGA-ORRILLO, H.; ARAÚJO, W. F.; ABANTO-RODRIGUEZ C.; SAKAZAKI, R. T.; BARDALES-LOZANO R. M.; POLO-VARGAS, A. R.MULCH INFLUENCE ON EVAPOTRANSPIRATION, CROP COEFFICIENT AND WATER USE EFFICIENCY OF CORN GROWN IN THE SAVANNAH   2 ABSTRACTIrrigation consumes large amounts of water, and minimizing consumption and maximizing the production are  important to a proper crop management . In order to obtain information for irrigation management, the aim of the present study was to determine evapotranspiration (ETc),  crop coefficient (Kc) and  water use efficiency (WUE) of maize grown in soil with and without cover, during the various stages of development, using drainage lysimeters. The experiment was conducted in Cauamé campus of the Federal University of Roraima, from 19/04/2014 to 08/07/2014, in Boa Vista, RR. The reference evapotranspiration (ETo) was estimated by the Penman-Monteith method. The results of the corn ETc during the crop cycle in soil with and without coverage were 421.5 and 351.0 mm, respectively. The daily average of ETc were 4.1 mm day-1 for bare soil and 3.4 mm day-1 for soil with cover. The ground cover led to different values of Kc's for corn in the same stages as compared to Kc's from the bare ground. For bare soil, the Kc's observed for the phenological stages I, II, III, and IV were 0.40; 0.84; 1.59 and 0.81, respectively. As for covered soil, the Kc's in the same stadiums mentioned were 0.28; 0.64; 1.49 and 0.48, respectively. The WUE to soil with cover was 1.77 kg m-3 and ground without cover was 1.65 kg m-3. These results show that  soil mulching influenceS maize water consumption throughout its cycle. Keywords: Zea mays. Irrigation. Ground covered. Water consumption.


2016 ◽  
Vol 13 (2) ◽  
pp. 94-107 ◽  
Author(s):  
S Roy ◽  
M Barman ◽  
AM Puste ◽  
SK Gunri ◽  
K Jana

Field experiment was conducted at Instructional Farm, Jaguli (Mohanpur), Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India during two consecutive summer seasons of 2010-11, and 2011-12. The experiment was laid out in split-plot design having 4 levels of irrigation– rainfed without mulch, rainfed with mulch, irrigation at IW (depth of irrigation water) / CPE (Cumulative pan evaporation) ratios of 0.5 and 0.75 in main-plot and 4 inter cropping systems, sole maize, sole mungbean, maize + mungbean (1:1 row ratio) and maize + mungbean (3:2 row ratio) considered as sub-plot treatments replicated thrice. Results revealed that application of irrigation and intercropping systems markedly influenced the growth, yield and yield components (number of cobs/plant, number of grains/cob in case of maize and number of pods/plant and number of seeds/pod in case of mungbean) where the maximum value of these components were recorded with the application of irrigation at IW/CPE ratio 0.75 in sole crop. Maize-mungbean in 3:2 row ratio yielded higher than that of 1:1 intercropping system which might be due to less light interception and more competition for water and nutrition between both the crops. CU of water increased with the increasing levels of irrigation and the maximum value (17.75 kg ha-1 mm- 1) of WUE (water use efficiency) was observed with irrigation at IW: CPE ratio 0.75 under intercropping system of maize : mungbean in 3:2 row ratio followed by IW: CPE ratio 0.50. Among the sole crop, maximum WUE was with IW/CPE ratio 0.75 might be due to more consumption of water corresponding to production potential of maize, while, it was more under rainfed with mulch in mungbean. The relative crowding coefficient (RCC) also revealed both the intercropping systems were advantageous and the land equivalent ratio (LER) increased with the level of irrigation.Thus, maize grown in association with mungbean (3:2 row ratio) were found to be more profitable (B:C ratio of 2.58) with higher monetary advantage as compared to sole crop of maize (B:C ratio of 1.98) with the application of irrigation at IW: CPE ratio of 0.75 in new alluvial zone of West Bengal.SAARC J. Agri., 13(2): 94-107 (2015)


Author(s):  
Daniel F. de Carvalho ◽  
Daniela P. Gomes ◽  
Dionizio H. de Oliveira Neto ◽  
José G. M. Guerra ◽  
Janaína R. C. Rouws ◽  
...  

ABSTRACT This study was carried out to evaluate the contributions to the optimization of water use in a carrot crop under different forms of mulch using Gliricidia sepium, fertilization with castor bean cakes and irrigation water depths. The experiment was conducted in Seropédica, RJ, Brazil (22º 46’ S and 43º 41’ W), from June to September 2010. The experiment was conducted using a split-split-plot scheme (5 x 3 x 2), with four replicates. The five plots had irrigation depths corresponding to 0, 43, 72, 100 and 120% of crop evapotranspiration (ETc); the three subplots contained the different forms of mulch (whole leaves (WL) and chopped leaves and branches (CLB)) and the absence of mulch (AM); and the two sub-subplots contained either the presence (PF) or absence of fertilization (AF). Using time domain reflectometry (TDR) in the irrigation management, water depths ranging from 67.8 to 285.5 mm were applied. The use of mulch in association with fertilization led to higher yields and water-use efficiency (WUE) of the carrot plants, and the mulch composed of WL performed best. The application of irrigation depths corresponding to 97% of ETc promoted the highest carrot yields, although the highest values of WUE were observed, with irrigation depths corresponding to a range from 51 to 68% of ETc.


Sign in / Sign up

Export Citation Format

Share Document