scholarly journals Research progress on immune response of B lymphocytes and anti-Mycobacterium tuberculosis infection

2016 ◽  
Vol 5 (1) ◽  
pp. 1-4
Author(s):  
Jiacong You

Abstract Multiple studies elucidated the importance of cellular immune mechanisms for protection against Mycobacterium tuberculosis. However, recent studies showed that B lymphocytes play a role that is underestimated through various interactions with cellular immune response, forming an important aspect of host defense against M. tuberculosis bacteria. Therefore, the author hereby proposes a progressive perspective for immunology of tuberculosis, i.e., cellular immunity and humoral immunity are not necessarily mutually exclusive. The present study summarizes recent studies that support the important role of B lymphocytes in terms of M. tuberculosis infection.

2018 ◽  
Vol 219 (10) ◽  
pp. 1662-1670 ◽  
Author(s):  
Valerie A C M Koeken ◽  
Ekta Lachmandas ◽  
Anca Riza ◽  
Vasiliki Matzaraki ◽  
Yang Li ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Manikuntala Kundu ◽  
Joyoti Basu

Non-coding RNAs have emerged as critical regulators of the immune response to infection. MicroRNAs (miRNAs) are small non-coding RNAs which regulate host defense mechanisms against viruses, bacteria and fungi. They are involved in the delicate interplay between Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), and its host, which dictates the course of infection. Differential expression of miRNAs upon infection with M. tuberculosis, regulates host signaling pathways linked to inflammation, autophagy, apoptosis and polarization of macrophages. Experimental evidence suggests that virulent M. tuberculosis often utilize host miRNAs to promote pathogenicity by restricting host-mediated antibacterial signaling pathways. At the same time, host- induced miRNAs augment antibacterial processes such as autophagy, to limit bacterial proliferation. Targeting miRNAs is an emerging option for host-directed therapies. Recent studies have explored the role of long non-coding RNA (lncRNAs) in the regulation of the host response to mycobacterial infection. Among other functions, lncRNAs interact with chromatin remodelers to regulate gene expression and also function as miRNA sponges. In this review we attempt to summarize recent literature on how miRNAs and lncRNAs are differentially expressed during the course of M. tuberculosis infection, and how they influence the outcome of infection. We also discuss the potential use of non-coding RNAs as biomarkers of active and latent tuberculosis. Comprehensive understanding of the role of these non-coding RNAs is the first step towards developing RNA-based therapeutics and diagnostic tools for the treatment of TB.


ExRNA ◽  
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Ava Behrouzi ◽  
Marjan Alimohammadi ◽  
Amir Hossein Nafari ◽  
Mohammad Hadi Yousefi ◽  
Farhad Riazi Rad ◽  
...  

Abstract MicroRNAs are non-coding RNAs, playing an important role in regulating many biological pathways, such as innate immune response against various infections. Different studies confirm that many miRNAs act as important regulators in developing a strategy for the survival of Mycobacterium tuberculosis in the host cell. On the other hand, an innate immune response is one of the important aspects of host defense against Mycobacterium. Considering the importance of miRNAs during tuberculosis infection, we focused on studies that performed on the role of various miRNAs related to pathogenic bacteria, M. tuberculosis in the host. Also, we have introduced important miRNAs that can be used as a biomarker for the detection of Mycobacterium.


2014 ◽  
Vol 26 (6) ◽  
pp. 588-600 ◽  
Author(s):  
John Chan ◽  
Simren Mehta ◽  
Sushma Bharrhan ◽  
Yong Chen ◽  
Jacqueline M. Achkar ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1732
Author(s):  
Sandra Patricia Palma Albornoz ◽  
Thais Fernanda de Campos Fraga-Silva ◽  
Ana Flávia Gembre ◽  
Rômulo Silva de Oliveira ◽  
Fernanda Mesquita de Souza ◽  
...  

The microbiota of the gut–lung axis affects local and far-reaching immune responses and might also trigger chronic and inflammatory diseases. We hypothesized that gut dysbiosis induced by obesity, which coexists in countries with a high tuberculosis burden, aggravates the host susceptibility and the pulmonary damage tolerance. To assess our hypothesis, we used a model of high-fat diet (HFD)-induced obesity, followed by infection of C57BL/6 mice with Mycobacterium tuberculosis. We showed that obesity increased the susceptibility, the pulmonary inflammation and IFN-γ levels in M. tuberculosis-infected mice. During the comorbidity obesity and tuberculosis, there is an increase of Bacteroidetes and Firmicutes in the lungs, and an increase of Firmicutes and butyrate in the feces. Depletion of gut microbiota by antibiotic treatment in the obese infected mice reduced the frequencies of CD4+IFN-γ+IL-17− cells and IFN-γ levels in the lungs, associated with an increase of Lactobacillus. Our findings reinforce the role of the gut–lung axis in chronic infections and suggest that the gut microbiota modulation may be a potential host-directed therapy as an adjuvant to treat TB in the context of IFN-γ-mediated immunopathology.


Virulence ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1227-1238
Author(s):  
Nathan Scott Kieswetter ◽  
Mumin Ozturk ◽  
Shelby-Sara Jones ◽  
Sibusiso Senzani ◽  
Melissa Dalcina Chengalroyen ◽  
...  

Microbiology ◽  
2014 ◽  
Vol 160 (9) ◽  
pp. 1821-1831 ◽  
Author(s):  
Viveshree S. Govender ◽  
Saiyur Ramsugit ◽  
Manormoney Pillay

Adhesion to host cells is a precursor to host colonization and evasion of the host immune response. Conversely, it triggers the induction of the immune response, a process vital to the host’s defence against infection. Adhesins are microbial cell surface molecules or structures that mediate the attachment of the microbe to host cells and thus the host–pathogen interaction. They also play a crucial role in bacterial aggregation and biofilm formation. In this review, we discuss the role of adhesins in the pathogenesis of the aetiological agent of tuberculosis, Mycobacterium tuberculosis. We also provide insight into the structure and characteristics of some of the characterized and putative M. tuberculosis adhesins. Finally, we examine the potential of adhesins as targets for the development of tuberculosis control strategies.


Sign in / Sign up

Export Citation Format

Share Document