scholarly journals Similarity of regulatory network between leukemia stem cells and normal hemopoietic stem cells

2018 ◽  
Vol 6 (4) ◽  
pp. 129-140
Author(s):  
Zhi-Jian Li ◽  
Xing-Ling Sui ◽  
Xue-Bo Yang ◽  
Wen Sun

AbstractTo reveal the biology of AML, we compared gene-expression profiles between normal hematopoietic cells from 38 healthy donors and leukemic blasts (LBs) from 26 AML patients. We defined the comparison of LB and unselected BM as experiment 1, LB and CD34+ isolated from BM as experiment 2, LB and unselected PB as experiment 3, and LB and CD34+ isolated from PB as experiment 4. Then, protein–protein interaction network of DEGs was constructed to identify critical genes. Regulatory impact factors were used to identify critical transcription factors from the differential co-expression network constructed via reanalyzing the microarray profile from the perspective of differential co-expression. Gene ontology enrichment was performed to extract biological meaning. The comparison among the number of DEGs obtained in four experiments showed that cells did not tend to differentiation and CD34+ was more similar to cancer stem cells. Based on the results of protein–protein interaction network,CREBBP,F2RL1,MCM2, andTP53were respectively the key genes in experiments 1, 2, 3, and 4. From gene ontology analysis, we found that immune response was the most common one in four stages. Our results might provide a platform for determining the pathology and therapy of AML.

2015 ◽  
Vol 11 (3) ◽  
pp. 835-843 ◽  
Author(s):  
Wenhai Xie ◽  
Jin Sun ◽  
Ji Wu

Spermatogonial stem cells (SSCs) are responsible for sustained spermatogenesis throughout the reproductive life of the male.


2022 ◽  
Vol 02 ◽  
Author(s):  
Sergey Shityakov ◽  
Jane Pei-Chen Chang ◽  
Ching-Fang Sun ◽  
David Ta-Wei Guu ◽  
Thomas Dandekar ◽  
...  

Background: Omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, have beneficial effects on human health, but their effect on gene expression in elderly individuals (age ≥ 65) is largely unknown. In order to examine this, the gene expression profiles were analyzed in the healthy subjects (n = 96) at baseline and after 26 weeks of supplementation with EPA+DHA to determine up-regulated and down-regulated dif-ferentially expressed genes (DEGs) triggered by PUFAs. The protein-protein interaction (PPI) networks were constructed by mapping these DEGs to a human interactome and linking them to the specific pathways. Objective: This study aimed to implement supervised machine learning models and protein-protein interaction network analysis of gene expression profiles induced by PUFAs. Methods: The transcriptional profile of GSE12375 was obtained from the Gene Expression Om-nibus database, which is based on the Affymetrix NuGO array. The probe cell intensity data were converted into the gene expression values, and the background correction was performed by the multi-array average algorithm. The LIMMA (Linear Models for Microarray Data) algo-rithm was implemented to identify relevant DEGs at baseline and after 26 weeks of supplemen-tation with a p-value < 0.05. The DAVID web server was used to identify and construct the en-riched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Finally, the construction of machine learning (ML) models, including logistic regression, naïve Bayes, and deep neural networks, were implemented for the analyzed DEGs associated with the specific pathways. Results: The results revealed that up-regulated DEGs were associated with neurotrophin/MAPK signaling, whereas the down-regulated DEGs were linked to cancer, acute myeloid leukemia, and long-term depression pathways. Additionally, ML approaches were able to cluster the EPA/DHA-treated and control groups by the logistic regression performing the best. Conclusion: Overall, this study highlights the pivotal changes in DEGs induced by PUFAs and provides the rationale for the implementation of ML algorithms as predictive models for this type of biomedical data.


2018 ◽  
Vol 11 (5) ◽  
Author(s):  
Mostafa Rezaei Tavirani ◽  
Vahid Mansouri ◽  
Sina Rezaei Tavirani ◽  
Saeed Hesami Tackallou ◽  
Mohammad Rostami - Nejad

2021 ◽  
Vol 20 ◽  
pp. 153303382097966
Author(s):  
Zihang Chen ◽  
Xing-yu Li ◽  
Peng Guo ◽  
Dong-lai Wang

Background: Rhabdomyosarcoma is the most common soft tissue tumor in children. Rhabdomyosarcoma commonly results in pain and bleeding caused by tumor compression and is prone to early metastasis and recurrence, which can seriously affect the therapeutic outcomes and long-term prognosis. Up to 37.7% of rhabdomyosarcomas may metastasize. Therefore, the molecular mechanisms underlying rhabdomyosarcoma must be explored to identify an effective target for its early diagnosis and specific treatment. Methods: A dataset of 18 rhabdomyosarcoma tissue samples and 6 healthy skeletal muscle samples was downloaded. Differentially expressed genes between rhabdomyosarcoma and healthy tissue samples were identified by GEO2R. Kyoto Encyclopedia of Genes and Genomes and gene ontology pathway enrichment analyses were performed. A protein–protein interaction network was constructed, and hub genes were identified. Expression and survival analyses of hub genes were performed. Additionally, 30 patients with rhabdomyosarcoma were recruited, and overall survival information and samples were collected. Reverse transcription quantitative real-time polymerase chain reaction assays were performed to verify the expression of MYBPC2 and MYL1 in rhabdomyosarcoma tumor tissues. The Kaplan–Meier method was used to explore overall survival based on our clinical data. Results: In total, 164 genes were up-regulated and 394 were down-regulated in rhabdomyosarcoma tumor tissues. Gene ontology analysis revealed that variations were predominantly enriched in the cell cycle, muscle contraction, muscle system processes, cytoskeleton, nucleotide binding, and cytoskeletal protein binding. The protein–protein interaction network revealed 3274 edges, and 441 nodes were constructed. Ten hub genes were identified; of these, MYBPC2 and MYL1 were significantly up-regulated in rhabdomyosarcoma. Compared with the healthy group, patients with rhabdomyosarcoma exhibiting high expression of MYBPC2 and MYL1 exhibited significantly worse overall survival. Conclusions: We found differentially expressed genes between rhabdomyosarcoma and healthy tissue samples. MYBPC2 and MYL1 may be involved in the pathogenesis of rhabdomyosarcoma and therefore deserve further exploration.


2017 ◽  
Vol 8 (Suppl 1) ◽  
pp. S20-S21 ◽  
Author(s):  
Akram Safaei ◽  
Mostafa Rezaei Tavirani ◽  
Mona Zamanian Azodi ◽  
Alireza Lashay ◽  
Seyed Farzad Mohammadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document