scholarly journals The response of sward-dwelling arthropod communities to reduced grassland management intensity in pastures

2015 ◽  
Vol 54 (2) ◽  
pp. 107-120 ◽  
Author(s):  
Alvin J. Helden ◽  
Annette Anderson ◽  
John Finn ◽  
Gordon Purvis

AbstractWe compared arthropod taxon richness, diversity and community structure of two replicated grassland husbandry experiments to investigate effects of reduced management intensity, as measured by nutrient input levels (390, 224 and 0 kg/ha per year N in one experiment, and 225 and 88 kg/ha per year N in another). Suction sampling was used to collect Araneae, Coleoptera, Hemiptera and Hymenoptera, with Araneae and Coleoptera also sampled with pitfall trapping. Univariate analyses found no significant differences in abundance and species density between treatments. However, with multivariate analysis, there were significant differences in arthropod community structure between treatments in both experiments.Reducing N input and associated stocking rates, as targeted by agri-environment schemes, can significantly alter arthropod communities but without increasing the number of species present. Other approaches that may be necessary to achieve substantial enhancement of sward arthropod biodiversity are suggested.

2016 ◽  
Vol Volume 112 (Number 9/10) ◽  
Author(s):  
Monique Botha ◽  
Stefan J. Siebert ◽  
Johnnie van den Berg ◽  
◽  
◽  
...  

Abstract The long-standing tradition of classifying South Africa’s biogeographical area into biomes is commonly linked to vegetation structure and climate. Because arthropod communities are often governed by both these factors, it can be expected that arthropod communities would fit the biomes. To test this hypothesis, we considered how well arthropod species assemblages fit South Africa’s grassy biomes. Arthropod assemblages were sampled from six localities across the grassland and savanna biomes by means of suction sampling, to determine whether the two biomes have distinctive arthropod assemblages. Arthropod samples of these biomes clustered separately in multidimensional scaling analyses. Within biomes, arthropod assemblages were more distinctive for savanna localities than grassland. Arthropod samples of the two biomes clustered together when trophic groups were considered separately, suggesting some similarity in functional assemblages. Dissimilarity was greatest between biomes for phytophagous and predacious trophic groups, with most pronounced differentiation between biomes at sub-escarpment localities. Our results indicate that different arthropod assemblages do fit the grassy biomes to some extent, but the pattern is not as clear as it is for plant species.


2016 ◽  
Author(s):  
Scott Ferrenberg ◽  
Alexander S. Martinez ◽  
Akasha M. Faist

Background. Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods. Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies diversity and assemblages. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models calculated from observed vs. expected levels of species turnover (Beta diversity) among samples. Results. Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. Discussion. Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a ground-dwelling arthropod community following a disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of different processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory.


2017 ◽  
Vol 58 (2) ◽  
pp. 245-260 ◽  
Author(s):  
Wael S. Eltohamy ◽  
Ahmad Alzeny ◽  
Yasmine A. M. Azab

The spatial pattern of zooplankton communities at Damietta coast, southeastern Mediterranean was studied to assess the impact of human activities on the abundance and community structure. Twenty-five stations from five different stressed sites were sampled in June-July 2014. Thirty-four zooplankton taxa were recorded, in addition to the larvae of copepods and meroplankton. Copepoda was the most abundant group among which, Oithona nana, Euterpina acutifrons, and Parvocalanus cirrostratus were the most frequent. The calanoid copepod Pseudodiaptomus trihamatus is a new record for the Mediterranean Sea that may have been introduced via ballast water. Multivariate/Univariate analyses demonstrated that 1) the environmental variables and zooplankton communities represented significant differences among five sites; 2) the spatial variations of community structure were undoubtedly due to land-based effluents; and 3) among all environmental variables, salinity and phytoplankton biomass had the major determining effects on the spatial patterns of zooplankton categories. The results indicates that not only the discharged water makes the Damietta coast at risk, but also the ballast water is not less dangerous. Hence, we emphasize the need for activation of the ballast water management to reduce the risk of future species invasions.


2020 ◽  
Vol 10 (23) ◽  
pp. 13518-13529
Author(s):  
Noëlle Klein ◽  
Coralie Theux ◽  
Raphaël Arlettaz ◽  
Alain Jacot ◽  
Jean‐Nicolas Pradervand

2018 ◽  
Vol 13 (7) ◽  
pp. 074020 ◽  
Author(s):  
Stephan Estel ◽  
Sebastian Mader ◽  
Christian Levers ◽  
Peter H Verburg ◽  
Matthias Baumann ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 740
Author(s):  
Isabella Ghiglieno ◽  
Anna Simonetto ◽  
Francesca Orlando ◽  
Pierluigi Donna ◽  
Marco Tonni ◽  
...  

Soil represents an important pool of biodiversity, hosting about a quarter of the living species on our planet. This soil richness has led to increasing interest in the structural and functional characteristics of its biodiversity. Studies of arthropod responses, in terms of abundance and taxon richness, have increased in relation to their ecological value as bioindicators of environmental change. This research was carried out over the 2014–2018 period with the aim to better understand arthropod taxa responses in vineyard soils in Franciacorta (Lombardy, Italy). To determine the biological composition in terms of arthropod taxa presence, one hundred soil samples were analysed. Environmental characteristics, such as chemical composition, soil moisture and temperature, and soil management were characterized for each soil sample. A total of 19 taxa were identified; the NMDS model analysis and the cluster analysis divided them into five groups according to their co-occurrence patterns. Each group was related to certain abiotic conditions; of these, soil moisture, temperature and organic matter were shown to be significant. A decision tree analysis showed that a longer period since conversion from conventional to organic farming lead to a higher arthropod biodiversity defined as a higher number of taxa.


2016 ◽  
Vol 13 (12) ◽  
pp. 3757-3776 ◽  
Author(s):  
Jinfeng Chang ◽  
Philippe Ciais ◽  
Mario Herrero ◽  
Petr Havlik ◽  
Matteo Campioli ◽  
...  

Abstract. Grassland management type (grazed or mown) and intensity (intensive or extensive) play a crucial role in the greenhouse gas balance and surface energy budget of this biome, both at field scale and at large spatial scale. However, global gridded historical information on grassland management intensity is not available. Combining modelled grass-biomass productivity with statistics of the grass-biomass demand by livestock, we reconstruct gridded maps of grassland management intensity from 1901 to 2012. These maps include the minimum area of managed vs. maximum area of unmanaged grasslands and the fraction of mown vs. grazed area at a resolution of 0.5° by 0.5°. The grass-biomass demand is derived from a livestock dataset for 2000, extended to cover the period 1901–2012. The grass-biomass supply (i.e. forage grass from mown grassland and biomass grazed) is simulated by the process-based model ORCHIDEE-GM driven by historical climate change, rising CO2 concentration, and changes in nitrogen fertilization. The global area of managed grassland obtained in this study increases from 6.1  ×  106 km2 in 1901 to 12.3  ×  106 km2 in 2000, although the expansion pathway varies between different regions. ORCHIDEE-GM also simulated augmentation in global mean productivity and herbage-use efficiency over managed grassland during the 20th century, indicating a general intensification of grassland management at global scale but with regional differences. The gridded grassland management intensity maps are model dependent because they depend on modelled productivity. Thus specific attention was given to the evaluation of modelled productivity against a series of observations from site-level net primary productivity (NPP) measurements to two global satellite products of gross primary productivity (GPP) (MODIS-GPP and SIF data). Generally, ORCHIDEE-GM captures the spatial pattern, seasonal cycle, and interannual variability of grassland productivity at global scale well and thus is appropriate for global applications presented here.


Sign in / Sign up

Export Citation Format

Share Document