suction sampling
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 1)

Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 246
Author(s):  
Cassie M. Pinnell ◽  
Geana S. Ayala ◽  
Melissa V. Patten ◽  
Katharyn E. Boyer

Restoration projects provide a valuable opportunity to experimentally establish foundational habitats in different combinations to test relative effects on community assembly. We evaluated the development of macroinvertebrate communities in response to planting of eelgrass (Zostera marina) and construction of reefs intended to support the Olympia oyster (Ostrea lurida) in the San Francisco Estuary. Plots of each type, alone or interspersed, were established in 2012 in a pilot living shorelines project, and quarterly invertebrate monitoring was conducted for one year prior to restoration, and three years post-restoration using suction sampling and eelgrass shoot collection. Suction sampling revealed that within one year, oyster reefs supported unique invertebrate assemblages as compared to pre-restoration conditions and controls (unmanipulated mudflat). The eelgrass invertebrate assemblage also shifted, becoming intermediate between reefs and controls. Interspersing both types of habitat structure led eelgrass invertebrate communities to more closely resemble those of oyster reefs alone, though the eelgrass assemblage maintained some distinction (primarily by supporting gammarid and caprellid amphipods). Eelgrass shoot collection documented some additional taxa known to benefit eelgrass growth through consumption of epiphytic algae; however, even after three years, restored eelgrass did not establish an assemblage equivalent to natural beds, as the eelgrass sea hare (Phyllaplysia taylori) and eelgrass isopod (Pentidotea resecata) remained absent or very rare. We conclude that the restoration of two structurally complex habitat types within tens of meters maximized the variety of invertebrate assemblages supported, but that close interspersion dampened the separately contributed distinctiveness. In addition, management intervention may be needed to overcome the recruitment limitation of species with important roles in maintaining eelgrass habitat.


2021 ◽  
Author(s):  
Anna Šobánová ◽  
Zdenek Duriš

Multigene molecular revision of a series of specimens of the rare spongobiotic palaemonid shrimp genus, Onycocaridella Bruce, 1981, collected predominantly from Papua New Guinea, has doubled the known species diversity to six. Of the previously known species, O. monodoa (Fujino & Miyake, 1969) and O. stenolepis (Holthuis, 1952) were analysed in the present study, whereas sequenceable specimens of the type species, O. prima Bruce, 1981, were not available. The present molecular analysis (combined COI, 16S, H3 markers) recovered six separate genetic lineages, indicating the presence of four undescribed species. Three of the latter are described in the present study. Remarkably higher known species diversity of Onycocaridella is thus recorded from a single geographic region – Papua New Guinea. The increased diversity reported here was discovered by application of complementary collecting techniques (hand picking, stone brushing, dead-coral sorting, suction sampling). One of the present new species is also reported from Australia, and O. monodoa is newly recorded from New Caledonia. A revised diagnosis of the genus and a key to identification of all known species of Onycocaridella are provided.


Biology ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Gabriella Möller ◽  
Tamar Keasar ◽  
Idan Shapira ◽  
Daniella Möller ◽  
Marco Ferrante ◽  
...  

Enriching agroecosystems with non-crop vegetation is a popular strategy for conservation biocontrol. In vineyards, the effects of specific seeded or planted cover crops on natural enemies are well-studied, whereas conserving spontaneously developing weeds received less attention. We compared parasitoid communities between matched pairs of vineyard plots in northern Israel, differing in weed management practices: “herbicide”, repeated herbicide applications vs. “ground cover”, maintaining resident weeds and trimming them when needed. Using suction sampling, we assessed the parasitoids’ abundance, richness, and composition during three grape-growing seasons. Ground cover plots had greater parasitoid abundances and cumulative species richness than herbicide-treated plots, possibly because of their higher vegetation cover and richness. Dominant parasitoid species varied in their magnitude and direction of response to weed management. Their responses seem to combine tracking of host distributions with attraction to additional vegetation-provided resources. Parasitoid community composition was mildly yet significantly influenced by weed management, while season, year, and habitat (weeds vs. vine) had stronger effects. Vineyard weeds thus support local biocontrol agents and provide additional previously demonstrated benefits (e.g., soil conservation, lower agrochemical exposure) but might also attract some crop pests. When the benefits outweigh this risk, weed conservation seems a promising step towards more sustainable agricultural management.


Bothalia ◽  
2019 ◽  
Vol 49 (1) ◽  
Author(s):  
Eleonore L. Slabbert ◽  
Rhoda R. Malgas ◽  
Ruan Veldtman ◽  
Pia Addison

Background: Cyclopia is endemic to regions of the Cape Floristic Region across the Eastern and Western Cape provinces of South Africa and is commonly known as honeybush. Honeybush has historically been used as an herbal tea, and has proven medicinal properties. Honeybush biomass and extracts are used in the functional foods and cosmetics sectors, both locally and overseas. The growing demand for honeybush calls for increased agricultural production and a shift away from the predominantly wild harvested supply.Objectives: The current study aimed to address the lack of baseline knowledge on honeybush phenology and its associated arthropod community to advance sustainable production of commercially valued plants in the genus.Method: The study was conducted on wild and cultivated Cyclopia species (Cyclopia maculata and Cyclopia genistoides) at respective sites in the Overberg region. Sampling took place from April 2014 to April 2015 using qualitative methods for recording seasonal honeybush phenology and suction sampling for aboveground arthropods. Focal insect taxa (Coleoptera, Hemiptera, Thysanoptera, Lepidoptera and Hymenoptera) were sorted and identified to family level and classified into functional feeding guilds.Results: Qualitative phenology observations of wild C. maculata and cultivated C. genistoides indicated a high level of congruency in seasonality of phenophase stages. Associated arthropod assemblages contained a diversity of families per functional feeding group, namely phytophagous, zoophagous and omnivorous taxa, with high seasonal variability.Conclusion: Findings highlight the complexity of ecological elements to be taken into consideration for ecologically sound honeybush cultivation. Outcomes can be applied to land management practices and governance policies promoting sustainable agroecosystems in honeybush production areas.


2016 ◽  
Vol Volume 112 (Number 9/10) ◽  
Author(s):  
Monique Botha ◽  
Stefan J. Siebert ◽  
Johnnie van den Berg ◽  
◽  
◽  
...  

Abstract The long-standing tradition of classifying South Africa’s biogeographical area into biomes is commonly linked to vegetation structure and climate. Because arthropod communities are often governed by both these factors, it can be expected that arthropod communities would fit the biomes. To test this hypothesis, we considered how well arthropod species assemblages fit South Africa’s grassy biomes. Arthropod assemblages were sampled from six localities across the grassland and savanna biomes by means of suction sampling, to determine whether the two biomes have distinctive arthropod assemblages. Arthropod samples of these biomes clustered separately in multidimensional scaling analyses. Within biomes, arthropod assemblages were more distinctive for savanna localities than grassland. Arthropod samples of the two biomes clustered together when trophic groups were considered separately, suggesting some similarity in functional assemblages. Dissimilarity was greatest between biomes for phytophagous and predacious trophic groups, with most pronounced differentiation between biomes at sub-escarpment localities. Our results indicate that different arthropod assemblages do fit the grassy biomes to some extent, but the pattern is not as clear as it is for plant species.


2015 ◽  
Vol 54 (2) ◽  
pp. 107-120 ◽  
Author(s):  
Alvin J. Helden ◽  
Annette Anderson ◽  
John Finn ◽  
Gordon Purvis

AbstractWe compared arthropod taxon richness, diversity and community structure of two replicated grassland husbandry experiments to investigate effects of reduced management intensity, as measured by nutrient input levels (390, 224 and 0 kg/ha per year N in one experiment, and 225 and 88 kg/ha per year N in another). Suction sampling was used to collect Araneae, Coleoptera, Hemiptera and Hymenoptera, with Araneae and Coleoptera also sampled with pitfall trapping. Univariate analyses found no significant differences in abundance and species density between treatments. However, with multivariate analysis, there were significant differences in arthropod community structure between treatments in both experiments.Reducing N input and associated stocking rates, as targeted by agri-environment schemes, can significantly alter arthropod communities but without increasing the number of species present. Other approaches that may be necessary to achieve substantial enhancement of sward arthropod biodiversity are suggested.


Crustaceana ◽  
2015 ◽  
Vol 88 (2) ◽  
pp. 184-202 ◽  
Author(s):  
Halldis Ringvold ◽  
John-Arvid Grytnes ◽  
Gro I. van der Meeren

Marine cobble habitats in shallow waters are rich in faunal assemblages and known settling grounds for valuable fishery resources such as lobsters and crabs. Sampling these grounds is challenging as traditional techniques do not efficiently collect fast-moving benthic invertebrates. Typically, fast moving crustaceans are not sampled according to actual densities. This study used airlift suction sampling, pioneered in North America, to quantify benthic faunal assemblages in cobble grounds across 68 sampling locations in south-western Norway. In total, 72 species of benthic invertebrates (5276 individual specimens) were identified, with an overall sampling efficiency of 76.4%. Polychaeta and decapod crustaceans dominated the samples, with species diversity (Shannon Index, ) highest in Location 3. Cluster and Ordination analyses were further used to relate assemblages to a number of selected variables. Overall, the study highlights that suction sampling provides a low-cost and efficient method for quantifying mobile benthic fauna in structurally complex marine habitats (i.e., cobble).


2013 ◽  
Vol 9 (1) ◽  
pp. 42-58 ◽  
Author(s):  
Richard A. Wahle ◽  
Charlene Bergeron ◽  
John Tremblay ◽  
Carl Wilson ◽  
Victoria Burdett-Coutts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document