scholarly journals On the Effects of Malaria Treatment on Parasite Drug Resistance – Probability Modelling of Genotyped Malaria Infections

Author(s):  
Cletus Kwa Kum ◽  
Daniel Thorburn ◽  
Gebrenegus Ghilagaber ◽  
Pedro Gil ◽  
Anders Björkman
2017 ◽  
Vol 61 (5) ◽  
Author(s):  
Suci Nuralitha ◽  
Lydia S. Murdiyarso ◽  
Josephine E. Siregar ◽  
Din Syafruddin ◽  
Jessica Roelands ◽  
...  

ABSTRACT The evolutionary selection of malaria parasites within an individual host plays a critical role in the emergence of drug resistance. We have compared the selection of atovaquone resistance mutants in mouse models reflecting two different causes of failure of malaria treatment, an inadequate subtherapeutic dose and an incomplete therapeutic dose. The two models are based on cycles of insufficient treatment of Plasmodium berghei-infected mice: repeated inadequate treatment associated with a subtherapeutic dose (RIaT) (0.1 mg kg−1 of body weight) and repeated incomplete treatment with a therapeutic dose (RIcT) (14.4 mg kg−1 of body weight). The number of treatment cycles for the development of a stable resistance phenotype during RIaT was 2.00 ± 0.00 cycles (n = 9), which is not statistically different from that during RIcT (2.57 ± 0.85 cycles; combined n = 14; P = 0.0591). All mutations underlying atovaquone resistance selected by RIaT (M133I, T142N, and L144S) were found to be in the Qo1 (quinone binding 1) domain of the mitochondrial cytochrome b gene, in contrast to those selected by RIcT (Y268N/C, L271V, K272R, and V284F) in the Qo2 domain or its neighboring sixth transmembrane region. Exposure of mixed populations of resistant parasites from RIaT to the higher therapeutic dose of RIcT revealed further insights into the dynamics of within-host selection of resistance to antimalarial drugs. These results suggest that both inadequate subtherapeutic doses and incomplete therapeutic doses in malaria treatment pose similar threats to the emergence of drug resistance. RIcT and RIaT could be developed as useful tools to predict the potential emergence of resistance to newly introduced and less-understood antimalarials.


2016 ◽  
Vol 60 (6) ◽  
pp. 3821-3823 ◽  
Author(s):  
Eldin Talundzic ◽  
Mateusz M. Plucinski ◽  
Shweta Biliya ◽  
Luciana M. Silva-Flannery ◽  
Paul M. Arguin ◽  
...  

The rapid emergence of drug-resistant malaria parasites during the course of an infection remains a major challenge for providing accurate treatment guidelines. This is particularly important in cases of malaria treatment failure. Using a previously well-characterized case of malaria treatment failure, we show the utility of using next-generation sequencing for early detection of the rise and selection of a previously reported atovaquone-proguanil (malarone) drug resistance-associated mutation.


Author(s):  
Dieudonné Mvumbi

World is currently experiencing a new pandemic for which no curative treatment is available. At this time, coronavirus disease 2019 (Covid-19) has reached 183 countries and has caused several deaths. Many reports presented chloroquine (CQ) and hydrochloroquine (HCQ), former drugs used against malaria, as the best current choice to fight this terrible disease. As these molecules had been withdrawn in malaria treatment policy due to chemoresistance, their reintroduction could have some consequences. Though local malaria prevalence could decrease for a while, molecular changes are likely to happen on some plasmodium falciparum genes involved in conferring drug resistance. This could threaten efforts in malaria control, if these molecules are widely administered.


2017 ◽  
Author(s):  
Mostafa Zamanian ◽  
Daniel E. Cook ◽  
Stefan Zdraljevic ◽  
Shannon C. Brady ◽  
Daehan Lee ◽  
...  

Parasitic nematodes impose a debilitating health and economic burden across much of the world. Nematode resistance to anthelmintic drugs threatens parasite control efforts in both human and veterinary medicine. Despite this threat, the genetic landscape of potential resistance mechanisms to these critical drugs remains largely unexplored. Here, we exploit natural variation in the model nematodes Caenorhabditis elegans and Caenorhabditis briggsae to discover quantitative trait loci (QTL) that control sensitivity to benzimidazoles widely used in human and animal medicine. High-throughput phenotyping of albendazole, fenbendazole, mebendazole, and thiabendazole responses in panels of recombinant lines led to the discovery of over 15 QTL in C. elegans and four QTL in C. briggsae associated with divergent responses to these anthelmintics. Many of these QTL are conserved across benzimidazole derivatives, but others show drug and dose specificity. We used near-isogenic lines to recapitulate and narrow the C. elegans albendazole QTL of largest effect and identified candidate variants correlated with the resistance phenotype. These QTL do not overlap with known benzimidazole resistance genes from parasitic nematodes and present specific new leads for the discovery of novel mechanisms of nematode benzimidazole resistance. Analyses of orthologous genes reveal significant conservation of candidate benzimidazole resistance genes in medically important parasitic nematodes. These data provide a basis for extending these approaches to other anthelmintic drug classes and a pathway towards validating new markers for anthelmintic resistance that can be deployed to improve parasite disease control.Author SummaryThe treatment of roundworm (nematode) infections in both humans and animals relies on a small number of anti-parasitic drugs. Resistance to these drugs has appeared in veterinary parasite populations and is a growing concern in human medicine. A better understanding of the genetic basis for parasite drug resistance can be used to help maintain the effectiveness of anti-parasitic drugs and to slow or to prevent the spread of drug resistance in parasite populations. This goal is hampered by the experimental intractability of nematode parasites. Here, we use non-parasitic model nematodes to systematically explore responses to the critical benzimidazole class of anti-parasitic compounds. Using a quantitative genetics approach, we discovered unique genomic intervals that control drug effects, and we identified differences in the genetic architectures of drug responses across compounds and doses. We were able to narrow a major-effect genomic region associated with albendazole resistance and to establish that candidate genes discovered in our genetic mappings are largely conserved in important human and animal parasites. This work provides new leads for understanding parasite drug resistance and contributes a powerful template that can be extended to other anti-parasitic drug classes.


Sign in / Sign up

Export Citation Format

Share Document