scholarly journals Discovery of unique loci that underlie nematode responses to benzimidazoles

2017 ◽  
Author(s):  
Mostafa Zamanian ◽  
Daniel E. Cook ◽  
Stefan Zdraljevic ◽  
Shannon C. Brady ◽  
Daehan Lee ◽  
...  

Parasitic nematodes impose a debilitating health and economic burden across much of the world. Nematode resistance to anthelmintic drugs threatens parasite control efforts in both human and veterinary medicine. Despite this threat, the genetic landscape of potential resistance mechanisms to these critical drugs remains largely unexplored. Here, we exploit natural variation in the model nematodes Caenorhabditis elegans and Caenorhabditis briggsae to discover quantitative trait loci (QTL) that control sensitivity to benzimidazoles widely used in human and animal medicine. High-throughput phenotyping of albendazole, fenbendazole, mebendazole, and thiabendazole responses in panels of recombinant lines led to the discovery of over 15 QTL in C. elegans and four QTL in C. briggsae associated with divergent responses to these anthelmintics. Many of these QTL are conserved across benzimidazole derivatives, but others show drug and dose specificity. We used near-isogenic lines to recapitulate and narrow the C. elegans albendazole QTL of largest effect and identified candidate variants correlated with the resistance phenotype. These QTL do not overlap with known benzimidazole resistance genes from parasitic nematodes and present specific new leads for the discovery of novel mechanisms of nematode benzimidazole resistance. Analyses of orthologous genes reveal significant conservation of candidate benzimidazole resistance genes in medically important parasitic nematodes. These data provide a basis for extending these approaches to other anthelmintic drug classes and a pathway towards validating new markers for anthelmintic resistance that can be deployed to improve parasite disease control.Author SummaryThe treatment of roundworm (nematode) infections in both humans and animals relies on a small number of anti-parasitic drugs. Resistance to these drugs has appeared in veterinary parasite populations and is a growing concern in human medicine. A better understanding of the genetic basis for parasite drug resistance can be used to help maintain the effectiveness of anti-parasitic drugs and to slow or to prevent the spread of drug resistance in parasite populations. This goal is hampered by the experimental intractability of nematode parasites. Here, we use non-parasitic model nematodes to systematically explore responses to the critical benzimidazole class of anti-parasitic compounds. Using a quantitative genetics approach, we discovered unique genomic intervals that control drug effects, and we identified differences in the genetic architectures of drug responses across compounds and doses. We were able to narrow a major-effect genomic region associated with albendazole resistance and to establish that candidate genes discovered in our genetic mappings are largely conserved in important human and animal parasites. This work provides new leads for understanding parasite drug resistance and contributes a powerful template that can be extended to other anti-parasitic drug classes.

2021 ◽  
Author(s):  
Stephen R Doyle ◽  
Roz Laing ◽  
David Bartley ◽  
Alison Morrison ◽  
Nancy Holroyd ◽  
...  

Understanding the genetic basis of anthelmintic drug resistance in parasitic nematodes is key to tracking and combatting their spread. Here, we use a genetic cross in a natural host-parasite system to simultaneously map resistance loci for the three major classes of anthelmintics. This approach identifies novel alleles for resistance to benzimidazoles and levamisole and implicates the transcription factor, cky-1, in ivermectin resistance. This gene is within a locus under selection in ivermectin resistant populations worldwide; functional validation using knockout and gene expression experiments supports a role for cky-1 overexpression in ivermectin resistance. Our work demonstrates the feasibility of high-resolution forward genetics in a parasitic nematode, and identifies variants for the development of molecular diagnostics to combat drug resistance in the field.


2020 ◽  
Vol 31 (3) ◽  
pp. 145-159
Author(s):  
Haladu Ali Gagman ◽  
Nik Ahmad Irwan Izzauddin Nik Him ◽  
Hamdan Ahmad ◽  
Shaida Fariza Sulaiman ◽  
Rahmad Zakaria ◽  
...  

Gastrointestinal nematode infections can cause great losses in revenue due to decrease livestock production and animal death. The use of anthelmintic to control gastrointestinal nematode put a selection pressure on nematode populations which led to emergence of anthelmintic resistance. Because of that, this study was carried out to investigate the efficacy of aqueous and methanol extract of Cassia siamea against the motility of C. elegans Bristol N2 and C. elegans DA1316. Caenorhabditis elegans Bristol N2 is a susceptible strain and C. elegans DA1316 is an ivermectin resistant strain. In vitro bioassay of various concentrations of (0.2, 0.6, 0.8, 1.0 and 2.0 mg mL–1) aqueous and methanol extracts of C. siamea was conducted against the motility of L4 larvae of C. elegans Bristol N2 and C. elegans DA1316. The L4 larvae were treated with 0.02 μg mL–1 of ivermectin served as positive control while those in M9 solution served as negative control. The activity of the extracts was observed after 24 h and 48 h. A significant difference was recorded in the extract performance compared to control at (P < 0.001) after 48 h against the motility of the larvae of both strains. The methanol extracts inhibited the motility of C. elegans Bristol N2 by 86.7% as well as DA1316 up to 84.9% at 2.0 mg mL–1 after 48 h. The methanol extract was more efficient than aqueous extract (P < 0.05) against the motility of both strains of C. elegans. Cassia siamea may be used as a natural source of lead compounds for the development of alternative anthelmintic against parasitic nematodes as well ivermectin resistant strains of nematodes.


2016 ◽  
Vol 53 (2) ◽  
pp. 120-125 ◽  
Author(s):  
M. Urda Dolinská ◽  
A. Königová ◽  
M. Babják ◽  
M. Várady

SummaryGastrointestinal parasitic nematodes in sheep cause severe economic losses. Anthelmintics are the most commonly used drugs for prophylaxis and therapy against parasitic helminths. The problem of drug resistance has developed for all commercially available anthelmintics in several genera and classes of helminths. In vitro and in vivo tests are used to detect anthelmintic resistance. Two in vitro methods (larval migration inhibition test and micromotility test) for the detection of ivermectin (IVM) resistance were compared using IVM-resistant and IVM-susceptible isolates of Haemonchus contortus. The degree of resistance for each test was expressed as a resistance factor (RF). The micromotility test was more sensitive for quantitatively measuring the degree of resistance between susceptible and resistant isolates. The RFs for this test for IVM and eprinomectin ranged from 1.00 to 108.05 and from 3.87 to 32.32, respectively.


2019 ◽  
Author(s):  
Barbara Hinney ◽  
Julia Schoiswohl ◽  
Lynsey Melville ◽  
Vahel J. Ameen ◽  
Walpurga Wille-Piazzai ◽  
...  

Abstract Infections of small ruminants with trichostrongyloid nematodes often result in reduced productivity and may be detrimental to the host. Anthelmintic resistance (AR) against most anthelmintic drug classes is now widespread amongst the trichostrongyloids. Baseline establishment, followed by regular monitoring of the level of AR, is necessary for farmers and veterinarians to make informed decisions about parasite management. The detection of single nucleotide polymorphisms (SNPs) is a sensitive method to detect AR against benzimidazoles (BZs), one of the most widely used anthelmintic classes. Alpine transhumance constitutes a special type of pasturing of sheep from many different farms, the aim of this study was to investigate the prevalence of benzimidazole resistance alleles in this particular management system. Sixteen sheep flocks in Styria and Salzburg in Austria were examined by pyrosequencing for SNPs at codons 167, 198 and 200 of the isotype-1 β-tubulin gene. The frequency of the resistance-associated mutation F200Y was 87–100% for H. contortus, 77–100% for T. colubriformis and <5–66% for T. circumcincta. Additionally, the F167Y polymorphism was detected in T. colubriformis from two farms at a frequency of 19% and 23% respectively. The high resistance allele frequency in H. contortus and T. colubriformis in the examined sheep population urgently calls for the development of new treatment strategies to sustainably control trichostrongyloid infections for this kind of pasturing, since the frequent mixing of flocks during the alpine summer grazing must be considered an important risk factor for the spread of resistant nematodes to a large number of farms.


Parasitology ◽  
2020 ◽  
Vol 147 (8) ◽  
pp. 897-906 ◽  
Author(s):  
Russell W. Avramenko ◽  
Elizabeth M. Redman ◽  
Claire Windeyer ◽  
John S. Gilleard

AbstractAs genomic research continues to improve our understanding of the genetics of anthelmintic drug resistance, the revolution in DNA sequencing technologies will provide increasing opportunities for large-scale surveillance for the emergence of drug resistance. In most countries, parasite control in cattle and bison has mainly depended on pour-on macrocyclic lactone formulations resulting in widespread ivermectin resistance. Consequently, there is an increased interest in using benzimidazole drugs which have been used comparatively little in cattle and bison in recent years. This situation, together with our understanding of benzimidazole resistance genetics, provides a practical opportunity to use deep-amplicon sequencing to assess the risk of drug resistance emergence. In this paper, we use deep-amplicon sequencing to scan for those mutations in the isotype-1 β-tubulin gene previously associated with benzimidazole resistance in many trichostrongylid nematode species. We found that several of these mutations occur at low frequency in many cattle and bison parasite populations in North America, suggesting increased use of benzimidazole drugs in cattle has the potential to result in widespread emergence of resistance in multiple parasite species. This work illustrates a post-genomic approach to large-scale surveillance of early emergence of anthelmintic resistance in the field.


2021 ◽  
Author(s):  
Clayton Dilks ◽  
Emily Koury ◽  
Claire Buchanan ◽  
Erik Andersen

Infections by parasitic nematodes cause large health and economic burdens worldwide. We use anthelmintic drugs to reduce these infections. However, resistance to anthelmintic drugs is extremely common and increasing worldwide. It is essential to understand the mechanisms of resistance to slow its spread. Recently, four new parasitic nematode beta-tubulin alleles have been identified in benzimidazole (BZ) resistant parasite populations: E198I, E198K, E198T, and E198stop. These alleles have not been tested for the ability to confer resistance or for any effects that they might have on organismal fitness. We introduced these four new alleles into the sensitive C. elegans laboratory-adapted N2 strain and exposed these genome-edited strains to both albendazole and fenbendazole. We found that all four alleles conferred resistance to both BZ drugs. Additionally, we tested for fitness consequences in both control and albendazole conditions over seven generations in competitive fitness assays. We found that none of the edited alleles had deleterious effects on fitness in control conditions and that all four alleles conferred strong and equivalent fitness benefits in BZ drug conditions. Because it is unknown if previously validated alleles confer a dominant or recessive BZ resistance phenotype, we tested the phenotypes caused by five of these alleles and found that none of them conferred a dominant BZ resistance phenotype. Accurate measurements of resistance, fitness effects, and dominance caused by the resistance alleles allow for the generation of better models of population dynamics and facilitate control practices that maximize the efficacy of this critical anthelmintic drug class.


2021 ◽  
Author(s):  
Kathryn S. Evans ◽  
Janneke Wit ◽  
Lewis Stevens ◽  
Steffen R. Hahnel ◽  
Briana Rodriguez ◽  
...  

AbstractParasitic nematodes cause a massive worldwide burden on human health along with a loss of livestock and agriculture productivity. Anthelmintics have been widely successful in treating parasitic nematodes. However, resistance is increasing, and little is known about the molecular and genetic causes of resistance. The free-living roundworm Caenorhabditis elegans provides a tractable model to identify genes that underlie resistance. Unlike parasitic nematodes, C. elegans is easy to maintain in the laboratory, has a complete and well annotated genome, and has many genetic tools. Using a combination of wild isolates and a panel of recombinant inbred lines constructed from crosses of two genetically and phenotypically divergent strains, we identified three genomic regions on chromosome V that underlie natural differences in response to the macrocyclic lactone (ML) abamectin. One locus was identified previously and encodes an alpha subunit of a glutamate-gated chloride channel (glc-1). Here, we validate and narrow two novel loci using near-isogenic lines. Additionally, we generate a list of prioritized candidate genes identified in C. elegans and in the parasite Haemonchus contortus by comparison of ML resistance loci. These genes could represent previously unidentified resistance genes shared across nematode species and should be evaluated in the future. Our work highlights the advantages of using C. elegans as a model to better understand ML resistance in parasitic nematodes.Author SummaryParasitic nematodes infect plants, animals, and humans, causing major health and economic burdens worldwide. Parasitic nematode infections are generally treated efficiently with a class of drugs named anthelmintics. However, resistance to many of these anthelmintic drugs, including macrocyclic lactones (MLs), is rampant and increasing. Therefore, it is essential that we understand how these drugs act against parasitic nematodes and, conversely, how nematodes gain resistance in order to better treat these infections in the future. Here, we used the non-parasitic nematode Caenorhabditis elegans as a model organism to study ML resistance. We leveraged natural genetic variation between strains of C. elegans with differential responses to abamectin to identify three genomic regions on chromosome V, each containing one or more genes that contribute to ML resistance. Two of these loci have not been previously discovered and likely represent novel resistance mechanisms. We also compared the genes in these two novel loci to the genes found within genomic regions linked to ML resistance in the parasite Haemonchus contortus and found several cases of overlap between the two species. Overall, this study highlights the advantages of using C. elegans to understand anthelmintic resistance in parasitic nematodes.


2020 ◽  
Author(s):  
Barbara Hinney ◽  
Julia Schoiswohl ◽  
Lynsey Melville ◽  
Vahel J. Ameen ◽  
Walpurga Wille-Piazzai ◽  
...  

Abstract Background: Infections of small ruminants with trichostrongyloid nematodes often result in reduced productivity and may be detrimental to the host. Anthelmintic resistance (AR) against most anthelmintic drug classes is now widespread amongst the trichostrongyloids. Baseline establishment, followed by regular monitoring of the level of AR, is necessary for farmers and veterinarians to make informed decisions about parasite management. The detection of single nucleotide polymorphisms (SNPs) is a sensitive method to detect AR against benzimidazoles (BZs), one of the most widely used anthelmintic classes. Alpine transhumance constitutes a special type of pasturing of sheep from many different farms, the aim of this study was to investigate the prevalence of benzimidazole resistance alleles in this particular management system. Results: Sixteen sheep flocks in Styria and Salzburg in Austria were examined by pyrosequencing for SNPs at codons 167, 198 and 200 of the isotype-1 β-tubulin gene. The frequency of the resistance-associated exchange F200Y was 87–100% for H. contortus, 77–100% for T. colubriformis and <5–66% for T. circumcincta. Additionally, the F167Y polymorphism was detected in T. colubriformis from two farms at a frequency of 19% and 23% respectively. Conclusions: The high resistance allele frequency in H. contortus and T. colubriformis in the examined sheep population urgently calls for the development of new treatment strategies to sustainably control trichostrongyloid infections for this kind of pasturing, since the frequent mixing of flocks during the alpine summer grazing must be considered an important risk factor for the spread of resistant nematodes to a large number of farms.


2011 ◽  
Vol 86 (2) ◽  
pp. 202-208 ◽  
Author(s):  
S.M. Williamson ◽  
A.J. Wolstenholme

AbstractP-glycoproteins (P-gps) are proteins that function as efflux pumps, removing lipophilic xenobiotic compounds from cells. There is evidence that P-gps play a role in the resistance of parasitic nematodes to anthelmintic drugs such as benzimidazoles and macrocyclic lactones. As anthelmintic resistance becomes more common, it is important to identify candidate resistance genes with the aim of understanding the molecular basis of resistance, and of developing assays to detect these resistance-associated changes. We identified several sequences from the genome of the parasite Haemonchus contortus with convincing homology to the known P-gp coding genes of the model nematode Caenorhabditis elegans. Nine of these sequences were successfully amplified by polymerase chain reaction (PCR) and shown to be most similar to the C. elegans sequences for pgp-1, pgp-2, pgp-3, pgp-4, pgp-9, pgp-10, pgp-11, pgp-12 and pgp-14. These partial P-gp sequences from H. contortus were used to design and optimize a quantitative real-time PCR assay to investigate potential changes in the expression levels of P-gp transcripts associated with drug resistance. No significant changes in P-gp mRNA expression levels were found in a rapidly selected ivermectin-resistant parasite isolate compared to its drug-sensitive parent, but the assay has the potential to be used on other isolates in the future to further investigate resistance-associated changes in P-gp gene expression.


Author(s):  
Е.Н. Ильина ◽  
Е.И. Олехнович ◽  
А.В. Павленко

С течением времени подходы к изучению резистентности к антибиотикам трансформировались от сосредоточения на выделенных в виде чистой культуры патогенных микроорганизмах к исследованию резистентности на уровне микробных сообществ, составляющих биотопы человека и окружающей среды. По мере того, как продвигается изучение устойчивости к антибиотикам, возникает необходимость использования комплексного подхода для улучшения информирования мирового сообщества о наблюдаемых тенденциях в этой области. Все более очевидным становится то, что, хотя не все гены резистентности могут географически и филогенетически распространяться, угроза, которую они представляют, действительно серьезная и требует комплексных междисциплинарных исследований. В настоящее время резистентность к антибиотикам среди патогенов человека стала основной угрозой в современной медицине, и существует значительный интерес к определению ниши, в которых бактерии могут получить гены антибиотикорезистентности, и механизмов их передачи. В данном обзоре мы рассматриваем проблемы, возникшие на фоне широкого использования человечеством антибактериальных препаратов, в свете формирования микрофлорой кишечника резервуара генов резистентности. Over the time, studies of antibiotic resistance have transformed from focusing on pathogenic microorganisms isolated as a pure culture to analysis of resistance at the level of microbial communities that constitute human and environmental biotopes. Advancing studies of antibiotic resistance require an integrated approach to enhance availability of information about observed tendencies in this field to the global community. It becomes increasingly obvious that, even though not all resistance genes can geographically and phylogenetically spread, the threat they pose is indeed serious and requires complex interdisciplinary research. Currently, the antibiotic resistance of human pathogens has become a challenge to modern medicine, which is now focusing on determining a potential source for bacterial genes of drug resistance and mechanisms for the gene transmission. In this review, we discussed problems generated by the widespread use of antibacterial drugs in the light of forming a reservoir of resistance genes by gut microflora.


Sign in / Sign up

Export Citation Format

Share Document