scholarly journals Nonviscous Oblique Stagnation Point Flow towards Riga Plate

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sobia Akbar ◽  
Azad Hussain

Purpose. The flow of nonviscous Casson fluid is examined in this study over an oscillating surface. The model of the fluid flow has been inspected in the presence of oblique stagnation point flow. The scrutiny is subsumed for the Riga plate by considering the effects of magnetohydrodynamics. The Riga plate is considered as an electromagnetic lever which carries eternal magnets and a stretching line up of alternating electrodes coupled on a plane surface. We have considered nonboundary layer two-dimensional incompressible flow of the fluid. The fluid flow model is analyzed in the fixed frame of reference. Motivation. The motivation of achieving more suitable results has always been a quest of life for scientists; the capability of determining the boundary layer of flow on aircraft which either stays laminar or turns turbulent has encouraged the researcher to study compressible flow in depth. The compressible fluid with boundary layer flow has been utilized by numerous researchers to reduce skin friction and enhance thermal and convectional heat exchange. Design/Approach/Methodology. The attained partial differential equations will be critically inspected by using suitable similarity transformation to transform these flows thrived equations into higher nonlinear ordinary differential equations (ODE). Then, these equations of motion are intercepted by mathematical techniques such as the bvp4c method in Maple and Matlab. The graphical and tabular representation of different parameters is also given. Findings. The behavior of β and modified Hartmann number M increases by positively increasing the values of both parameters for F η , while ω decreases with increasing the values of ω for F η . The graph of β shows upward behavior for distinct values for both G η and G ′ η for velocity portray. Prandtl number and β for the temperature profile of θ η and θ 1 η goes downward with increasing parameters.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Liaquat Ali Lund ◽  
Zurni Omar ◽  
Ilyas Khan ◽  
Dumitru Baleanu ◽  
Kottakkaran Sooppy Nisar

Abstract In this paper, the rate of heat transfer of the steady MHD stagnation point flow of Casson fluid on the shrinking/stretching surface has been investigated with the effect of thermal radiation and viscous dissipation. The governing partial differential equations are first transformed into the ordinary (similarity) differential equations. The obtained system of equations is converted from boundary value problems (BVPs) to initial value problems (IVPs) with the help of the shooting method which then solved by the RK method with help of maple software. Furthermore, the three-stage Labatto III-A method is applied to perform stability analysis with the help of a bvp4c solver in MATLAB. Current outcomes contradict numerically with published results and found inastounding agreements. The results reveal that there exist dual solutions in both shrinking and stretching surfaces. Furthermore, the temperature increases when thermal radiation, Eckert number, and magnetic number are increased. Signs of the smallest eigenvalue reveal that only the first solution is stable and can be realizable physically.


2015 ◽  
Vol 13 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Swati Mukhopadhyay

Abstract This paper presents the magnetohydrodynamic (MHD) boundary layer stagnation point flow with diffusion of chemically reactive species undergoing first-order chemical reaction over a permeable stretching sheet in presence of partial slip. With the help of similarity transformations, the partial differential equations corresponding to momentum and the concentration equations are transformed into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity increases with the increasing value of the ratio of the free stream velocity and the stretching velocity. Velocity decreases with the increasing magnetic parameter when the free-stream velocity is less than the stretching velocity but the opposite behavior is noted when the free-stream velocity is greater than the stretching velocity. Due to suction, fluid velocity decreases at a particular point of the surface. With increasing velocity slip parameter, velocity increases when the free-stream velocity is greater than the stretching velocity. But the concentration decreases in this case. Concentration decreases with increasing mass slip parameter.


2016 ◽  
Vol 71 (9) ◽  
pp. 837-848 ◽  
Author(s):  
Ehtsham Azhar ◽  
Z. Iqbal ◽  
E.N. Maraj

AbstractThe present article dicusses the computational analysis of entropy generation for the stagnation-point flow of Sutterby nanofluid over a linear stretching plate. The Sutterby fluid is chosen to study the effect for three major classes of non-Newtonian fluids, i.e. pseudoplastic, Newtonian, and dilatant. The effects of pertinent physical parameters are examined under the approximation of boundary layer. The system of coupled nonlinear partial differential equations is simplified by incorporating suitable similarity transformation into a system of non-linear-coupled ordinary differential equations. Entropy generation analysis is conducted numerically, and the results are displayed through graphs and tables. Significant findings are listed in the closing remarks.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
T. M. Ajayi ◽  
A. J. Omowaye ◽  
I. L. Animasaun

The problem of a non-Newtonian fluid flow past an upper surface of an object that is neither a perfect horizontal/vertical nor inclined/cone in which dissipation of energy is associated with temperature-dependent plastic dynamic viscosity is considered. An attempt has been made to focus on the case of two-dimensional Casson fluid flow over a horizontal melting surface embedded in a thermally stratified medium. Since the viscosity of the non-Newtonian fluid tends to take energy from the motion (kinetic energy) and transform it into internal energy, the viscous dissipation term is accommodated in the energy equation. Due to the existence of internal space-dependent heat source; plastic dynamic viscosity and thermal conductivity of the non-Newtonian fluid are assumed to vary linearly with temperature. Based on the boundary layer assumptions, suitable similarity variables are applied to nondimensionalized, parameterized and reduce the governing partial differential equations into a coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically using the shooting method together with the Runge-Kutta technique. The effects of pertinent parameters are established. A significant increases inRex1/2Cfxis guaranteed withStwhen magnitude ofβis large.Rex1/2Cfxdecreases withEcandm.


2019 ◽  
Vol 49 (4) ◽  
pp. 233-239
Author(s):  
Parasuraman Loganathan ◽  
Krishnamurthy Deepa

The buoyancy driven, chemically reacting and radiative Casson fluid flow past an impulsively started permeable Riga-plate is investigated through the numerical solution obtained by Crank-Nicholson implicit scheme of finite difference method. The main aim of this study is to control the boundary layer separation.  Escalating modified Hartmann number and the distance from leading edge of the plate reduces the viscous drag so that the separation can be controlled. Effects of permeability on the flow configuration are also elucidated. The results are validated by comparing the solutions of the literature which already exists.


Author(s):  
Nur Syamila Yusof ◽  
Siti Khuzaimah Soid ◽  
Mohd Rijal Illias ◽  
Ahmad Sukri Abd Aziz ◽  
Nor Ain Azeany Mohd Nasir

This study is aimed to analyze the steady of stagnation point flow and radiative heat transfer of a non-Newtonian fluid which is Casson fluid passing over an exponentially permeable slippery Riga plate in presence of thermal radiation, magnetic field, velocity slip, thermal slip, and viscous dissipation effects. The governing partial differential equations are transformed into ordinary differential equations by using similarity transformation then solved numerically by boundary value problem solver (BVP4C) in MATLAB software package. The numerical results are evaluated with previous researches to reach an agreement with the parameters of the current study. This study is discussing the behavior of the velocity and temperature profiles as well as skin friction coefficient and local Nusselt number for various physical parameters such as magnetic field, radiation, suction, thermal slip, velocity slip, Prandtl number, Eckert number and modified Hartmann number. Numerical results are shown graphically for each parameter with different values. It is found that the momentum boundary layer thickness increases with increasing the values of Casson parameter. The temperature decreases when the velocity slip parameter and thermal slip parameter are increased.


2021 ◽  
Vol 5 (1) ◽  
pp. 16-26
Author(s):  
Winifred N. Mutuku ◽  
Anselm O. Oyem

This study presents a convectively heated hydromagnetic Stagnation-Point Flow (SPF) of an electrically conducting Casson fluid towards a vertically stretching/shrinking sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behaviour and using similarity variables, the governing partial differential equations are transformed into coupled nonlinear ordinary differential equations. The dimensionless nonlinear equations are solved numerically by Runge-Kutta Fehlberg integration scheme with shooting technique. The effects of the thermophysical parameters on velocity and temperature profiles are presented graphically and discussed quantitatively. The result shows that the flow field velocity decreases with increase in magnetic field parameter and Casson fluid parameter .


2021 ◽  
Author(s):  
Umair Khan ◽  
Aurang Zaib ◽  
Anuar Ishak ◽  
S. Abu Bakar ◽  
El-Sayed M. Sherif ◽  
...  

Abstract This research numerically investigates 3D stagnation-point flow (SPF) past a horizontal plane surface conveying copper-aqueous titania hybrid nanofluid induced by non-Fourier heat flux (NFHF) that utilized in heat transfer processes. A Tiwari-Das model is engaged to examine the fluid flow dynamics and the heat transfer features of the hybrid nanofluid with thermal radiation effect. With aid of similarity variables, the leading nonlinear system involving partial differential equations (PDEs) is reduced to a system of ordinary differential equations (ODEs). This set of dimensionless coupled ODEs is then tackled through the bvp4c solver in MATLAB. For hybrid nanofluid, the graphical findings of the pertaining parameters as well as the saddle/nodal indicative parameter are disclosed and explained with the assist of figures and tables. The results illustrate that the rise of hybrid nanoparticles declines the motion of the fluids in both axes of coordinates ( and directions), while the temperature enhances. In addition, the temperature distribution declines due to relaxation parameter but uplifts due to radiation. Also, the thermal relaxation parameter reduces the temperature. Moreover, the present solution displays an excellent agreement with earlier published works in the limited cases of normal fluid and nanofluid.


Sign in / Sign up

Export Citation Format

Share Document