Heat and Mass Transfer of Thermophoretic MHD Flow of Powell–Eyring Fluid over a Vertical Stretching Sheet in the Presence of Chemical Reaction and Joule Heating

2015 ◽  
Vol 13 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Najeeb Alam Khan ◽  
Faqiha Sultan ◽  
Nadeem Alam Khan

Abstract The present paper deals with the effect of surface heat and mass transfer on magnetohydrodynamic flow of Powell–Eyring fluid over a vertical stretching sheet. The effects of thermophoresis, Joule heating and chemical reaction are also considered. The governing non-linear partial differential equations of the model are transformed into coupled non-linear ordinary differential equations using a similarity transformation and solved numerically by Runge–Kutta method and analytically by homotopy analysis method (HAM). The convergence is carefully checked by plotting $$\hbar $$-curves. For different dimensionless parameters, numerical and analytical calculations are carried out and an investigation of the obtained results shows that the flow field is influenced considerably by the buoyancy ratio and thermal radiation, chemical reaction and magnetic field parameters. A totally analytical and consistently applicable solution is derived which agrees with numerical results.

2011 ◽  
Vol 16 (1) ◽  
pp. 1-16 ◽  
Author(s):  
M. S. Alam ◽  
M. U. Ahammad

This paper deals with the effects of variable chemical reaction and variable electric conductivity on free convection and mass transfer flow of a viscous, incompressible and electrically conducting fluid over an inclined stretching sheet with variable heat and mass fluxes under the influence of Dufour and Soret effects. The non-linear boundary layer equations with boundary conditions are transferred into a system of non-linear ordinary differential equations using an established similarity transformation. These non-linear and locally-similar ordinary differential equations are solved numerically by applying Nachtsheim–Swigert shooting iteration technique with sixth-order Runge–Kutta integration scheme. Comparison with previously published work is obtained and excellent agreement is found. The effects of various parameters on the dimensionless velocity, temperature and concentration profiles as well as the local skin-friction coefficient, heat and mass transfer rate from the stretching sheet to the surrounding fluid are presented graphically and in tabulated form for a hydrogen-air mixture. The numerical results showed that chemical reaction parameter K, order of reaction n, Dufour number Df , Soret number Sr and heat (or mass) flux parameter r play a crucial role in the solutions.


Author(s):  
AlfunsaPrathiba, Et. al.

in this paper, we analyzed the effect of a suction and Soret number on heat and mass transfer Magneto Hydrodynamics (MHD) flow past an exponentially stretching sheet with the heat source/sink. Appropriate similarity transformations were employed to convert the governing partial differential equations to a set of highly non-linear ordinary differential equations, which was then solved numerically by Runga kutta sixth order method together with shooting technique. The Numerical results are obtained for the skin friction coefficient, Nusselt and Sherwood numbers for selected values of the governing parameters, such as the suction, magnetic field parameter  , viscous dissipation parameter  , heat generation parameter  , Schmidt number  , and the chemical reaction rate parameter  . Besides, it is obtained that the concentration profile decreases with an increment of the Schmidt number. A comparison was made with a previous study available in the literature and we found that it is in a good agreement.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Reda G. Abdel-Rahman

An analysis is carried out to study the problem of heat and mass transfer flow over a moving permeable flat stretching sheet in the presence of convective boundary condition, slip, radiation, heat generation/absorption, and first-order chemical reaction. The viscosity of fluid is assumed to vary linearly with temperature. Also the diffusivity is assumed to vary linearly with concentration. The governing partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by using Lie group point of transformations. The system of transformed nonlinear ordinary differential equations is solved numerically using shooting techniques with fourth-order Runge-Kutta integration scheme. Comparison between the existing literature and the present study was carried out and found to be in excellent agreement. The effects of the various interesting parameters on the flow, heat, and mass transfer are analyzed and discussed through graphs in detail. The values of the local Nusselt number, the local skin friction, and the local Sherwood number for different physical parameters are also tabulated.


2017 ◽  
Vol 14 (1) ◽  
pp. 321-329
Author(s):  
Abeer A Shaaban

Explicit finite-difference method was used to obtain the solution of the system of the non-linear ordinary differential equations which transform from the non-linear partial differential equations. These equations describe the steady magneto-hydrodynamic flow of an oldroyd 8-constant non-Newtonian nano-fluid through a non-Darcy porous medium with heat and mass transfer. The induced magnetic field was taken into our consideration. The numerical formula of the velocity, the induced magnetic field, the temperature, the concentration, and the nanoparticle concentration distributions of the problem were illustrated graphically. The effect of the material parameters (α1 α2), Darcy number Da, Forchheimer number Fs, Magnetic Pressure number RH, Magnetic Prandtl number Pm, Prandtl number Pr, Radiation parameter Rn, Dufour number Nd, Brownian motion parameter Nb, Thermophoresis parameter Nt, Heat generation Q, Lewis number Le, and Sort number Ld on those formula were discussed specially in the case of pure Coutte flow (U0 = 1, d <inline-formula> <mml:math display="block"> <mml:mrow> <mml:mover accent="true"> <mml:mi>P</mml:mi> <mml:mo stretchy="true">^</mml:mo> </mml:mover> </mml:mrow> </mml:math> </inline-formula> /dx = 0). Also, an estimation of the global error for the numerical values of the solutions is calculated by using Zadunaisky technique.


2020 ◽  
Vol 25 (3) ◽  
pp. 86-102
Author(s):  
A. Sandhya ◽  
G.V. Ramana Reddy ◽  
G.V.S.R. Deekshitulu

AbstractThe impact of heat and mass transfer effects on an MHD flow past an inclined porous plate in the presence of a chemical reaction is investigated in this study. An effort has been made to explain the Soret effect and the influence of an angle of inclination on the flow field, in the presence of the heat source, chemical reaction and thermal radiation. The momentum, energy and concentration equations are derived as coupled second order partial differential equations. The model is non-dimensionalized and shown to be controlled by a number of dimensionless parameters. The resulting dimensionless partial differential equations can be solved by using a closed analytical method. Numerical results for pertaining parameters, such as the Soret number (Sr), Grashof number (Gr) for heat and mass transfer, the Schmidt number (Sc), Prandtl number (Pr), chemical reaction parameter (Kr), permeability parameter (K), magnetic parameter (M), skin friction (τ), Nusselt number (Nu) and Sherwood number (Sh) on the velocity, temperature and concentration profiles are presented graphically and discussed qualitatively.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Tesfaye Kebede ◽  
Eshetu Haile ◽  
Gurju Awgichew ◽  
Tadesse Walelign

In this paper, analytic approximation to the heat and mass transfer characteristics of a two-dimensional time-dependent flow of Williamson nanofluids over a permeable stretching sheet embedded in a porous medium has been presented by considering the effects of magnetic field, thermal radiation, and chemical reaction. The governing partial differential equations along with the boundary conditions were reduced to dimensionless forms by using suitable similarity transformation. The resulting system of ordinary differential equations with the corresponding boundary conditions was solved via the homotopy analysis method. The results of the study show that velocity, temperature, and concentration boundary layer thicknesses generally decrease as we move away from the surface of the stretching sheet and the Williamson parameter was found to retard the velocity but it enhances the temperature and concentration profiles near the surface. It was also found that increasing magnetic field strength, thermal radiation, or rate of chemical reaction speeds up the mass transfer but slows down the heat transfer rates in the boundary layer. The results of this study were compared with some previously published works under some restrictions, and they are found in excellent agreement.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
U. S. Mahabaleshwar ◽  
T. Anusha ◽  
M. Hatami

AbstractThe steady magnetohydrodynamics (MHD) incompressible hybrid nanofluid flow and mass transfer due to porous stretching surface with quadratic velocity is investigated in the presence of mass transpiration and chemical reaction. The basic laminar boundary layer equations for momentum and mass transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The mass equation in the presence of chemical reaction is a differential equation with variable coefficients, which is transformed to a confluent hypergeometric differential equation. The mass transfer is analyzed for two different boundary conditions of concentration field that are prescribed surface concentration (PSC) and prescribed mass flux (PMF). The asymptotic solution of concentration filed for large Schmidt number is analyzed using Wentzel-Kramer-Brillouin (WKB) method. The parameters influence the flow are suction/injection, superlinear stretching parameter, porosity, magnetic parameter, hybrid nanofluid terms, Brinkman ratio and the effect of these are analysed using graphs.


2020 ◽  
pp. 1733-1744
Author(s):  
G Narender ◽  
K Govardhan ◽  
G Sreedhar Sarma

A numerical investigation was performed for the radiative magnetohydrodynamic (MHD) viscous nanofluid due to convective stretching sheet. Heat and mass transfer were investigated in terms of viscous dissipations, thermal radiation and chemical reaction. The governing Partial Differential Equations (PDEs) were transformed into an arrangement of non-linear Ordinary Differential Equations (ODEs) by using the similarity transformation. The resulting system of ODEs is solved numerically by using shooting method along with Adams-Moulton Method of order four with the help of the computational software FORTAN. Furthermore, we compared our results with the existing results for especial cases. which are in an excellent agreement. Thenumerical solution obtained the velocity, temperature and concentration profiles. The figures showed differences among the parameters. Moreover, the numerical values of Nusselt and Sherwood numbers were presented and analyzed through tables.


Sign in / Sign up

Export Citation Format

Share Document